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Coalitional Games for Computation Offloading in
NOMA-Enabled Multi-Access Edge Computing

Quoc-Viet Pham, Member, IEEE, Hoang T. Nguyen, Zhu Han, Fellow Member, IEEE, and Won-Joo Hwang,
Senior Member, IEEE

Abstract—Multi-access edge computing (MEC) and nonorthog-
onal multiple access (NOMA) are two enabling technologies in
the 5G network and beyond. MEC admits user equipments (UEs)
running many more compute-intensive applications by providing
computing capabilities at the network edge and within radio
access networks, while NOMA enables multiple UEs to share the
same resource block, thus leveraging considerable advantages
such as greater spectral efficiency and a larger number of
supported UEs. The state-of-the-art showed that the combination
of NOMA and MEC can lower the energy consumption and/or
overall latency; however, they mostly focused on single-carrier
NOMA. In this paper, we investigate the computation offloading
problem in multi-carrier NOMA enabled MEC systems and solve
it from the cooperative game theory viewpoint using coalition
formation game. Particularly, UEs are considered as game players
and subcarriers are regarded as coalitions that can be used for
computation offloading of multiple UEs. Based on the introduced
coalition formation game, we develop a low-complexity algorithm
with convergence guarantee to achieve the Nash-stable solution.
Numerical results are provided to validate the effectiveness of
the proposed coalition game based algorithm as well as its
comparison with three baseline schemes.

Index Terms—Coalitional Game Theory, Computation Of-
floading, Multi-Access Edge Computing (MEC), Non-Orthogonal
Multiple Access (NOMA), Resource Allocation.

I. INTRODUCTION

With the development of Internet of Things (IoT) technolo-
gies and popularity of mobile devices (e.g., wearable comput-
ing devices and virtual reality glass), the global mobile traffic
is expected to increase at an exponential rate [1]. An Ericsson
report in [2] reveals that mobile traffic will increase twelve-
fold between 2016 and 2022. In response to the unprecedented
amount of data traffic and the emergence of new resource-
demanding applications, for example, 3D gaming, data ana-
lytics, and mobile blockchain, edge computing has become a
very realistic solution. To meet such high computing demands
at the edge of the network (also known as network edge, i.e.,
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near the end users), in late 2014 European Telecommunica-
tions Standards Institute (ETSI) introduced multi-access edge

computing (MEC) to provide “IT-based services and cloud
computing capabilities within the radio access network in the
vicinity of UEs” [3]. In other words, the main purpose of MEC
is to move mobile communication, computing, caching, and
control to the network edge. Compared with cloud computing,
MEC takes considerable advantages of reducing the latency,
offering energy savings for UEs, achieving higher reliability
[4]–[6]. Therefore, MEC has been considered as one of
the enabling technologies for ultra-reliable and low-latency
(URLLC) communications [6], [7].

NOMA, short for non-orthogonal multiple access, has been
emerged as a key component of radio access techniques in
the 5G network [8]. The fundamental idea of NOMA is using
superposition coding to superpose signals from various users
at the transmitter side and successive interference cancellation
to decode the intended signals at the receiver side. NOMA has
the potential to accommodate more UEs than the number of
available subcarriers, which can improve wireless communica-
tion with multiple potentials, including massive connectivity,
lower latency, higher spectral efficiency, and relaxed channel
feedback [9]. First, theoretically NOMA can serve multiple
UEs in an available resource, and thus NOMA is a key technol-
ogy for massive connectivities (e.g., Internet of Things). Next,
grant-free access and flexible scheduling can be enabled by
NOMA so that more UEs can be served simultaneously, thus
reducing the waiting latency. Third, NOMA demonstrates the
fairness provisioning and spectral efficiency enhancement over
conventional orthogonal multiple access (OMA) technologies.
Such better performance is achieved since NOMA users can
utilize all the subcarrier channels, whereas OMA users can
only enjoy a small fraction of the entire spectrum [5], [8].
Lastly, power-domain NOMA can relax the requirement of
channel feedback since accurate CSI is only used for power
allocation [10].

Motivated by the superiority of NOMA over OMA [9],
[10], the performance of MEC systems can be much enhanced
by NOMA, as compared to that of conventional OMA-based
MEC approaches. Let us give an example with two UEs, as
shown in Fig. 1, to illustrate this point. Here, UE 1 needs
to send emergent small-size packets to the eNB with a low
required data rate, but within a very short time duration,
and UE 2 needs to migrate a computation-heavy and delay-
tolerant task to the MEC server for remote processing. Ba-
sically, OMA-based approaches serve these two UEs with
two orthogonal subcarriers/time slots, which may result in

.
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Fig. 1: Example of MEC computation offloading using
NOMA.

the low efficiency of resource allocation and abysmal lack
of resources in the case of massive connectivities. NOMA
can overcome these drawbacks since two NOMA UEs can
be served using the same spectrum resource. As can be seen,
Fig. 1 shows that when two UEs select remote computing,
NOMA enables them to offload their computation tasks using
only one radio resource block (e.g., orthogonal frequency
division multiplexing (OFDM) subcarrier). Now, we suppose
that UE 2 has a big-data and latency-tolerant computation task
and two orthogonal subcarriers are available. In this case, a
feasible solution is utilizing NOMA in the first subcarrier
for computation offloading of UE 1 and a part of UE 2
while utilizing OMA in the second subcarrier for computation
offloading of the remaining workload of UE 2.

The exploitation of NOMA in MEC systems has been
recently investigated in many recent works. The energy min-
imization problem was studied in [11]–[15] and the latency
minimization was considered in [16]–[21], and joint comple-
tion time and energy consumption was minimized in [22]. The
direct observation from existing papers is that the combination
of NOMA and MEC can produce substantial reductions on
energy consumption and/or overall latency, which depends
largely on the problem formulation. However, most of the
state-of-the-art studies focused on single-carrier NOMA. Con-
cretely, optimization and performance analysis of NOMA-
enabled MEC are performed under a typical network setting,
where the time duration is slotted into orthogonal frames and
UEs in the same frame utilize NOMA for their computation
offloading. For example, a hybrid-NOMA approach with two
UEs was studied in [16], where NOMA is adopted in the
first time slot while the UE with latency-tolerant applications
is allowed to offload its remaining workload during another
dedicated time slot. The authors in [14], [15], [22] considered
TDMA for UEs in different NOMA groups, and jointly opti-
mized the task offloading ratio and time allocation for different
NOMA groups so as to minimize the energy consumption. We
are not aware of any work pertained to MEC with multi-carrier
(MC) NOMA.

In this work, we focus on a cooperative scheme among UEs
in the MC NOMA-based MEC system. Due to the prohibitive

time-complexity of optimal solution approaches and the need
for network scalability, we address the computation offloading
problem in MC NOMA-enabled MEC from the game theory
perspective. Motivated by the advantages of coalitional games
in addressing various problems in wireless communications
and networking, e.g., D2D communication [23], [24] and
cognitive radio [25], we propose in this work a coalition
formation game model. In more detail, coalitional games
concern a number of players, i.e., UEs in the context of
this paper, who cooperatively form coalitions in order to
optimize the network performance in terms of computation
overhead and obtain their offloading decisions in a distributed
manner. Based on the introduced coalition formation game, we
propose an algorithm with low computational complexity and
convergence guarantee to achieve the Nash-stable solution.

To the extent of our knowledge, this paper is the first trial
that addresses computation offloading in MC-NOMA enabled
MEC systems using coalitional game theory. In this regard,
our main contributions are summarized as follows.

• Different from the state-of-the-art, we consider MC
NOMA, a general case of NOMA, where there are
multiple groups. UEs within each group are assigned the
same subcarrier and are allowed to communicate with
the MeNB/MEC server following the NOMA principle,
and different orthogonal subcarriers are allocated to dif-
ferent groups. In the network setting, each UE needs to
determine (i) which computation mode is selected, local
processing or remote execution? and (ii) in the case of
offloading, which subcarrier is used for the computation
migration?

• We formulate a joint offloading decision and subcarrier
assignment problem that aims to minimize the total
computation overhead. To solve that mixed-integer pro-
gramming problem, we introduce the coalition formation
game, in which each subcarrier is regarded as a coalition
and it can be used for computation offloading of mul-
tiple UEs. After that, we devise a distributed coalition
formation game based algorithm and conduct theoretical
properties of the proposed algorithm.

• Numerical simulations are conducted under various per-
formance metrics and parameters in order to demonstrate
the effectiveness and outperformance of our proposed
algorithm in reducing the total computation overhead
when compared with three alternative schemes.

The rest of this paper is structured as follows. We introduce
the system models and formulate the optimization problem in
Section II. In Section III, we describe the coalition formation
game and present our proposed algorithm. We also conduct its
theoretical analyses of convergence, stability, and complexity.
Simulation results and comparisons of the proposed algorithm
with three other schemes are presented in Section IV. Finally,
Section V concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

As illustrated in Fig. 2, a network setting of N UEs and one
MEC server, which is attached to the corresponding MeNB,

1

.
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Fig. 2: Illustration of a NOMA-enabled MEC system.

is considered. In this work, we assume that the channels
are quasi-static Rayleigh fading, i.e., UEs stay unchanged
within each offloading period and vary independently between
any two periods. Moreover, we assume that both the UEs
and MeNB are equipped with one single antenna. Let N =
{1, . . . , N} and S = {1, . . . , S} denote the set of UEs and
orthogonal subcarriers, respectively. With NOMA, a subcarrier
can be shared among multiple UEs, and thus the received
signal of a UE at the MeNB contains not only its desired
signals, but also interfering signals from co-sharing UEs. We
use Us to denote the set of orders of UEs sharing subcarrier
s and assume that each UE can utilize at most one subcarrier
to offload its computations to the MEC server. Obviously, we
have Us \ Us0 = ;, 8s 6= s0, and

S
s2S Us = N .

B. Communication Model

Denote by A = {ans|n 2 N , s 2 S} the offloading
decision profile, where ans = 1 if UE n utilizes the subcarrier
s to offload its computation task and ans = 0 otherwise. For
example, in Fig. 1 UEs 1 and 2 offload their computations
using the same resource block, say the subcarrier 2, so a12 = 1
and a22 = 1. Since each UE can use at most one subcarrier
for computation offloading, the offloading decisions need to
satisfy the following constraint

X

s2S
ans  1, 8n 2 N . (1)

Denote by hns the uplink channel gain between UE n and
the MeNB on subcarrier s. The channel gains in cluster s are
sorted in the ascending order and we use the bijection bs(·)
to represent this order, where bs(j) denotes the position of
UE j in the sorted sequence on subcarrier s. Without loss of
generality, the received signals from UEs with bs(j) < bs(i)
is not decoded by UE i and thus is treated as noise. According
to [26], the decoding order in the uplink NOMA follows the
decreasing order of the channel gains, which is different from

the downlink NOMA, where the decoding order applies in
reverse.

The received signal-to-interference-plus-noise ratio (SINR)
of the UE n on the subcarrier s is expressed as follows:

�ns =
pnshnsP

j2Us:bs(j)<bs(n)

pjshjs + n0
, (2)

where pns denotes the transmit power of the UE n on the sub-
carrier s and n0 denotes the noise power1. For the UE n on the
subcarrier s, the achievable rate is Rns = B log2 (1 + �ns),
where B is the bandwidth of an orthogonal subcarrier. Thus,
the achievable rate of the UE n is given as follows:

Rn = B
X

s2S
ans log2 (1 + �ns) (3)

= B
X

s2S
ans log2

0

B@1 +
pnshnsP

j2Us:bs(j)<bs(n)

pjshjs + n0

1

CA .

C. Computation Model

From the user perspective, computation offloading is re-
garded as an important use case, which enables UEs to exploit
substantial computing resources at the edge so as to execute
compute-intensive functionalities. Basically, a computation
offloading decision can be categorized as: local execution, full

offloading, and partial offloading. Local computing indicates
that UEs have no benefit from computation offloading; accord-
ingly, the whole task is handled locally. In full offloading, the
entire task is migrated to the edge server for remote processing,
while it is divided into smaller parts in partial offloading, some
of which are processed locally and the remaining fraction is
executed remotely. Compared with partial offloading, binary
offloading (as considered in this work) is a general version,
which makes the offloading decision problem difficult to solve
due to the combinatorial nature of binary offloading decisions.

The computation task of each UE n is defined In =
{↵n,�n}, where ↵n is the data size of In and �n is the
required CPU cycles to accomplish In [28], [29]. We define
xn to characterize whether the local computing or computation
offloading is preferred and selected by the UE n. If UE n
decides to offload the task, xn = 1; otherwise, xn = 0, i.e.,
task In is executed locally by UE n. Each the UE chooses
either local computing or remote execution and utilizes at
most one subcarrier for computation offloading, we hold the
following equality

P
s2S ans = xn. On the one hand, NOMA

enables the sharing of one subcarrier by multiple offloading
UEs. On the other hand, each UE is allowed to select between
local and remote computing.

1The transmit power of UEs is predefined. When the joint design of
computation offloading decision and power control is considered, there are
some constraints on NOMA power allocation to be imposed, e.g., total
transmit power for all UEs utilizing the same cluster [26] and constraint for
efficient successive interference cancellation [27]. Distributed power control
needs to be developed to improve the network scalability. However, since
the power allocation problem is typically non-convex, one may exploit
heuristic and/or meta-heuristic approaches to obtain the solution in an efficient
manner. The joint optimization offloading decision and power allocation is an
interesting issue and is under our study.

-

?

?
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Regarding local computation, we denote f l
n as the CPU

computing capability of UE n (the superscript l signifies
local). The task In completion time can be given as

T l
n =

�n

f l
n

. (4)

The corresponding energy consumption El
n can be computed

as follows:
El

n = n�n

�
f l
n

�2
(5)

where n is a constant factor related to the hardware architec-
ture [29]. The computation overhead Zl

n is determined by the
latency T l

n and energy consumption El
n needed to accomplish

task In. Similar to [28], in this paper, Zl
n is defined below

Zl
n = �t

nT
l
n + �e

nE
l
n, (6)

which is the weighted sum of execution latency and energy
consumption with �t

n,�
e
n being the weighted parameters. The

UEs’ offloading decisions can be greatly affected by the UE
weights �t

n,�
e
n. Let us give an example with three UEs. UE 1

has a latency-sensitive application, thus it sets �t
n = 1,�e

n = 0.
Due to the energy-hungry application and its low battery state,
UE 2 sets �e

n = 1,�t
n = 0. UE 3 sets 0 < �t

n,�
e
n < 1 since

both the completion time and energy consumption are needed
to be considered. Alternatively, some metrics can be used
instead of computation overhead, for example, computation
efficiency and computation rate [30], [31].

In the case of remote execution of In, the completion time
T r
n (the superscript r stands for remote) is mainly composed

of two parts2: uplink transmission time T t
n and execution time

T e
n. Thus, we have T r

n = T t
n + T e

n. Here,

T t
n =

↵n

Rn
, T e

n =
�n

fn
, (7)

and where fn is the amount of remote computing resources al-
located to UE n. We note that fn = 0 when xn =

P
s2S ans =

0, i.e., task In is executed locally. In this work, we assume that
the MEC server allocates each offloading UE a fixed amount
of computing resources fn. This assumption may hold when
the MEC computing capability is sufficiently large, which
facilitates the MEC server to provide a fixed computing service
rate to multiple offloading UEs simultaneously. Moreover, the
collaboration between neighbour MEC servers helps scale up
their computing capabilities so as to guarantee computing
resources assigned to offloading UEs. The optimization of
task offloading, subcarrier assignment, and computing resource
allocation is promising, which is left for future research.

The total energy consumption is composed of three parts
corresponding to task offloading, remote computing, and result
downloading [28]. Since we focus on the UE perspective and
MeNB/MEC servers are typically powered by grid energy, we

2The response time of the computing result back to UEs can be ignored
since the size of computing result is usually small [28], [30], [31]. When
considering non-negligible computing result size, joint uplink and downlink
resource optimization can be designed by adopting time-division duplexing
mode in NOMA systems. This straightforward extension from our current
work is an interesting topic for future work.

only consider energy consumed for computation offloading.
Thus, we have

Er
n =

pn
&n

T t
n =

pn
&n

↵n

Rn
, (8)

where &n is the UE power amplifier efficiency. Then, the
computation overhead for remote execution of UE n can be
calculated as Zr

n = �t
nT

r
n + �e

nE
r
n.

D. Problem Formulation

It is clear that the total computation overhead is pertained
to the task offloading decisions xn and subcarrier assignment
an,s, 8s 2 S, n 2 N . We jointly optimize the computation
offloading decisions and subcarrier assignment with the aim of
minimizing the total computation overhead. In this regard, we
define an objective function that reflects the sum computation
overhead incurred by all UEs, denoted by Z (A), which can
be obtained as

Z (A) =
X

n2N

�
xnZ

r
n + (1� xn)Z

l
n

�
. (9)

The optimization problem of computation offloading in MC-
NOMA enabled MEC systems can be formulated as

min
A

Z (A) (10a)

s.t. ans, xn = {0, 1}, 8n 2 N , 8s 2 S, (10b)

xn =
X

s2S
ans  1, 8n 2 N . (10c)

The constraints in (10b) and (10c) indicates binary offloading,
i.e., a computation task can be processed using either local
computing or remote execution. It is observed that the problem
in (10) is a mixed-integer programming (MIP) problem due
to the existence of binary and integer variables. It is worth
mentioning that MIP problems are NP-hard by nature [32].
Although the optimal solution for MIP problems can be
achieved using some existing methods, e.g., branch-and-bound
algorithm and exhaustive search [33], the application of these
approaches is usually limited due to their prohibitive time-
complexity. In Section III below, we first introduce a coalition
formation game for computation offloading in NOMA-enabled
MEC systems and then develop a distributed algorithm to
solve the optimization problem in (10) with low computational
complexity.

III. COALITIONAL GAME APPROACH

A. Coalition Formation Game Formulation

Using the coalition game in our investigated system, UEs
form coalitions to improve the network efficiency in terms of
computation overhead. Each UE n in the network is regarded
as a game player, who needs to make a task offloading decision
on either executing locally or migrating the computation task
through a subcarrier. Since there are N UEs and S subcarriers
and binary offloading is considered, and thus N UEs can
form to create S +N coalitions. We denote the collection of
coalitions as F = {F1, . . . ,FS+N}, where Fi \ Fj = ; for
any i 6= j, and

SS+N
j=1 Fj = N , where the cardinality of the

collection F measures the number of coalitions. The coalition

d- local

1

???
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Fj with 1  j  S refers to the set of UEs utilizing subcarrier
j for computation offloading. For Fj with S+1  j  S+N
is UE j that executes the computation task locally.

It is perceived that the greater the number of UEs sharing
the same subcarrier for computation offloading, the greater
the receiver complexity for inter-user interference cancellation.
Actually, the larger number of co-sharing UEs reduces SINRs
of UEs with lower channel gains due to much more severe
interference, thus increasing the transmission latency and then
computation overhead. In such case, there is little incentive for
all UEs to utilize only one subcarrier for computation offload-
ing while some other subcarriers with good channel conditions
are available. Therefore, the formation of a grand coalition is
not beneficial and an efficient coalition formation scheme can
be devised to lower the total computation overhead. It is worth
noting that some of the coalitions may be empty if the channel
conditions of UEs on such subcarriers are not favorable and
some UEs decide to handle the tasks locally. The coalition
formation game with transferable utility is defined below.

Definition 1. A coalition formation game with transferable

utility for computation offloading and resource allocation

in NOMA-enabled MEC is a cooperative game, denoted as

(N ,R), where N is the finite set of players (i.e., UEs) and R
is the real-valued coalition payoff function. For every coalition

Fk, R (Fk) is a non-negative real number from the powerset

of N , which characterizes the total gain contributed by the

entire coalition Fk.

Consider a coalition Fk with 1  k  S, the computation
overhead of UE n is given by

Zn(an) = �t
n

✓
�n

fn
+

↵n

Rn

◆
+ �e

n
pn
&n

↵n

Rn
, (11)

where the offloading rate Rn in this case (i.e., ank = 1) can
be written as

Rn = Rnk = B log2

0

B@1 +
pnkhnkP

j2Fk:bk(j)<bk(n)

pjkhjk + n0

1

CA .

(12)
The total computation overhead induced by all the UEs in the
coalition Fk is given as

Zr
Fk

=
X

n2Fk

Zr
Fk(n)

=
X

n2Fk


�t
n�n

fn

+

✓
�t
n + �e

n
pn
&n

◆
↵n

B log2

0

@1 + pnkhnkP

j2Fk:bk(j)<bk(n)
pjkhjk+n0

1

A

3

7777775
.

(13)

Thus, the utility of coalition k that is substituted by the UEs
n 2 Fk, denoted by R (Fk), can be defined as the following:

R (Fk) =
X

n2Fk

Rn (Fk) =
X

n2Fk

�
Zl
n � Zr

Fk
(n)

�
. (14)

Here, the utility of the coalition Fk is the total computation of-
floading gain that can be obtained by utilizing the subcarrier k.
It is obvious that for any coalition Fk with S+1  k  S+N ,
we have R (Fk) = 0, i.e., the UEs do not have any benefit with
local execution and their appropriate selections of offloading
decision and subcarrier allocation can further improve the
system utility by reducing the computation overhead.

In the following, we formally define the coalitional game
and coalition formation (i.e., coalitional structure) for com-
putation offloading and subcarrier allocation in MC NOMA-
enabled MEC networks.

Definition 2. The coalitional game with transferable utility for

computation offloading and subcarrier allocation is a triplet

(N ,R,F), where:

• N is the set of UEs (i.e., game players).

• R (Fj) is the utility for every coalition Fj ✓ N , which

includes computation gain of all the UEs in the coalition

Fj .

• The coalitional structure is shaped as F =
{F1, . . . ,FS+N}, where Fi \Fj = ; for any i 6= j, andSS+N

j=1 Fj = N .

• The strategies of each player is to make a decision on

computation mode (i.e., local or remote execution) and

on subcarrier used for computation offloading, which is

based on its computation gain as well as those of other

players in the current and new coalition.

B. Coalition Game based Algorithm

In this subsection, we develop a distributed algorithm based
on the introduced game model. The most important aspect
of the coalitional game setting is the formation of coalitions.
Specifically, each UE has different preferences over potential
coalitions and adopts the preference relation to compare any
two collections of coalitions. In this regard, we present the
following definition of preference relation [34].

Definition 3. For any UE n 2 N , the preference order ⌫n is

defined as a complete, reflexive, and transitive binary relation

over the set of all coalitions that UE n can possibly form.

UEs form the coalitions in order to lower the total computa-
tion overhead. Each UE in the game can decide to join/leave a
specific coalition based on its preference relation and the UE’s
individual computation offloading gain. F1 ⌫n F2 indicates
that UE n prefers becoming a member of F1 rather than
becoming a member of F2, where F1 ✓ N and F2 ✓ N .
Using the asymmetric counterpart of ⌫n, denoted by �n,
F1 �n F2 implies that the UE n strictly prefers becoming
a member of F1 instead of being a member of F2. Since the
switching process should be based on coalition-value orders
(e.g., the utilitarian order) as a means to minimize the total
computation overhead and each offloading UE should have
a non-negative computation gain, for any UE n 2 N and
n 2 Fs,Fk, we propose the following preference

Fs �n Fk ,

R (Fs) +R (Fk \ n) > R (Fs \ n) +R(Fk),Rj(Fm) � 0

Rj(Fm \ n) � 0, 8j 2 {Fm \ n},m = s, k. (15)

:
.
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This definition implies that when the total computation gain
achieved in Fs is greater than in Fk and no other UE j in Fs

and Fk is negatively affected by the joining of UE n, UE n
has a stronger desire to become a member of Fs than Fk. To
form the coalitions in accordance with the preference relation
in (15), the following switch rule is defined.

Definition 4. Given a partition F = {F1, . . . ,FS+N} of

the set of UEs, if a UE n leaves its current coalition Fk,

k 2 {1, . . . , S +N} and joins another coalition Fs 2 F with

Fs 6= Fk, the current partition F is adjusted to form a new

partition F
0 = {F \ {Fs,Fk}} [ {Fk \ {n},Fs [ {n}}.

From the switch rule, we can find the offloading decisions
and subcarrier allocation from any initial coalition partition
by switch operations. The switch rule allows each UE to
decide on leaving its current coalition Fk and joining a new
coalition Fs as long as the preference relation Fs �n Fk in
(15) is satisfied. In doing so, a UE will perform a switch
operation if it can strictly enhance the system utility in
terms of total computation overhead and without negatively
affecting individual computation gains received by the other
UEs. In general, the aim of our proposed coalition formation
game is to find a coalitional structure (i.e., coalition partition)
in order to minimize the total computation overhead rather
than individual computation gains of UEs. Meanwhile, our
proposed coalitional game ensures that every UE has a benefit
with computation offloading, otherwise such UEs prefer to
execute their computation tasks locally.

Algorithm 1 Coalition Formation Algorithm for Computation
Offloading and Subcarrier Assignment.

1: Create a random partition Fini of the set of UEs N .
2: Set the current partition Fcur = Fini, iter = 0, and

num = 0.
3: repeat
4: Increase iter by 1: iter = iter + 1.
5: Select a UE n 2 N via a predetermined permutation

and find its current coalition Fk 2 Fcur.
6: Uniformly randomly choose another coalition Fs 2

Fcur,Fs 6= Fk.
7: if The preference relation Fs �n Fk is satisfied then
8: UE n leaves its current coalition Fk and joins Fs.
9: Update the current partition according to the switch

rule in Definition 4 Fcur  {Fcur \ {Fs,Fk}} [

{Fk \ {n},Fs [ {n}}.
10: Set num = 0.
11: else
12: Set num = num+ 1.
13: end if
14: until Fcur converges to a Nash-stable partition Ffin.
15: Output: Offloading decisions an, 8n 2 N and subcarrier

allocation an,s, 8n 2 Noff, s 2 S .

Based on the switch rule defined above, we design a
distributed coalition formation algorithm for computation of-
floading and subcarrier allocation as in Alg. 1, where UEs
perform switch operations until the final Nash-stable partition

is achieved. The proposed algorithm can be described as
follows:

• First, the algorithm is initialized by selecting any random
coalition partition Fini, which is then assigned to the cur-
rent partition Fcur. Moreover, the numbers of iterations
and consecutive unsuccessful switch operations, denoted
by iter and num, respectively, are set to zero.

• Next, a random UE n is selected according to a prede-
termined permutation. UE n randomly chooses another
coalition Fs that is different from its current coalition Fk.
The selected UE n requests the CSI on both coalitions Fs

and Fk from the MeNB. Then, UE n calculates the util-
ities of two coalitions as well as individual computation
gains. After that, UE n can make the switching decision,
i.e., to switch or not to switch.

• If the preference relation of UE n defined in (15) is
satisfied, UE n informs its two corresponding coalitions
about that switching and the current coalition partition is
updated.

• To further improve the convergence and reduce the al-
gorithm complexity, the concept of “consecutive unsuc-
cessful switch operations” num is utilized [23], [35]. If
a switch operation is performed, num is reset to zero,
otherwise num = num+1. When num equals 10 times
of the number of UEs, the algorithm stops and the final
Nash-stable partition is achieved.

Notably, the output of Alg. 1 is a Nash-stable coalition
partition, which minimizes the total computation overhead. If
task In is handled locally, FS+n = {n} and FS+n \ Fk =
;, 8k 6= (S+n). On the other hand, if UE n decides to offload
its computation task In through the subcarrier s, FS+n = ;
and n 2 Fs. Let us give a concrete example with S = 4
and N = 7. The coalition F

⇤
2 = {1, 3} indicates that UEs 1

and 3 are profitable from remote execution and they utilize
the subcarrier 2 for computation offloading. The coalition
F

⇤
6 = {2} implies that remote execution is not beneficial for

UE 2 and the computation task I2 is executed locally.

C. Theoretical analyses

1) Convergence: The convergence of Alg. 1 is elaborated
on the following Theorem.

Theorem 1. Regardless of the initial coalition partition Fini,

Alg. 1 is guaranteed to reach a final partition Ffin, which is

composed of a number of disjoint coalitions.

Proof. As the number of UEs and the number of subcarriers
are finite in our proposed algorithm and each UE can select
either local computing or computation offloading, the coali-
tions players (i.e., UEs) can form are also finite. Specifically,
there are N UEs and S subcarriers, thus Alg. 1 can form
at most S + N coalitions for each partition. In fact, each
UE can autonomously decide its potential coalitions and
perform switch operations according to the preference relation
in (15) and the switch rule in Definition 4, which leads to
an improvement in the system utility and results in a new-
and-unvisited partition. Moreover, the number of partitions of
the set N , also known as the Bell number, is finite [34].

I

- analysis
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Since each switch operation creates a new partition and the
number of partitions is finite, Alg. 1 is guaranteed to reach
a final Nash-stable partition Ffin. This proof indicates that
our proposed algorithm is highly suitable for NOMA-enabled
MEC systems with massive connectivities, where any initial
offloading decisions of a huge number of UEs will finally
result in a Nash-stable partition.

2) Stability: The stability of the coalition partition Ffin,
achieved from the convergence of Alg. 1, is now analyzed
using the concept of Nash equilibrium from the hedonic
coalition-partition games. We introduce the detailed definition
of Nash-stable partition in the following.

Definition 5. A coalition partition F = {F1, . . . ,FS+N} is

Nash-stable if 8n 2 N , n 2 Fs ⇢ F ,Fs �n Fk [ {n} for all

Fk ⇢ F ,Fs 6= Fk.

Theorem 2. The resulting partition Ffin produced by Alg. 1

is Nash-stable.

Proof. From Definition 5, a Nash-stable partition F expresses
that no UE prefers to leave its current coalition and join
another in F or to deviate and act non-cooperatively. To show
the stability of the resulting partition Ffin, we suppose that
Ffin resulting from Alg. 1 is not Nash-stable. Hence, there
exists a UE n 2 N and a coalition Fk ⇢ Ffin such that
Fk [ {n} �n Fs, where Fs ⇢ Ffin is the current coalition
of the UE n. In other words, UE n prefers to switch from Fs

to Fk, which contradicts the assumption that Ffin is the final
partition. Accordingly, the partition Ffin achieved from the
convergence of Alg. 1 is Nash-stable.

3) Complexity: In general, the complexity of Alg. 1 largely
depends on the number of switch operations. In each itera-
tion, the selected UE computes the preference of its current
coalition and a potential coalition, along with individual com-
putation gains of UEs in those two coalitions. In order to
check the preference relation (15) from the MeNB, the selected
UE needs to obtain its own channels as well as information
obtained from the UEs in the same coalition. Once the switch
operation is established, the UE switches from its current
coalition to the new preferred coalition. Since only one UE
is selected in each iteration, there is no more than one switch
operation to be performed. Denote by Niter the number of
iterations, then our proposed algorithm has the computational
complexity of O (Niter). It is obvious that the complexity of
Alg. 1 mainly relies on the number of iterations. As will be
shown in Section IV-E and Fig. 11, the proposed algorithm
yields the final Nash-stable solution with significantly lower
complexity than the optimal approach.

IV. SIMULATION RESULTS

A. Simulation Parameters

In this section, we carry out extensive simulations to eval-
uate our proposed algorithm. The simulation settings are as
follows. We consider a network setting with an MEC server
(i.e., an MeNB), which has the coverage radius of 500 m. All
the UEs are positioned at random locations within the coverage
of the MeNB and the minimum distance between a UE and
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Fig. 3: Total computation overhead of the proposed approach
and the optimal scheme with different numbers of UEs.

the MeNB is set to be 5 m. The noise power n0 is �100 dBm,
the transmit power is 100 mW, and the subcarrier bandwidth
B is 1 MHz. The pathloss from a UE to the MeNB for the
distance d can be computed as L(d) = 15.3 + 37.6 log 10(d).
Regarding the computation model, we adopt facial recognition
applications for all the UEs, which have ↵n = 420 KB and
�n = 1000 Megacycles [32], 8n 2 N . The local computing
capability f l

n of the UE n is picked at random from the set
{0.5, 0.8, 1.0} GHz and the MEC server allocates an amount
of 1.0 GHz computing resources to each offloading UE, i.e.,
fn = 109, 8n 2 N . The UE weights are set as �t

n = 0.5 and
�e
n = 0.5, 8n 2 N . The simulation result of each experiment

is achieved from 500 random channel instances on average.
For the purpose of showing the advantages of our pro-

posed coalition formation algorithm in reducing the total
computation overhead, three following schemes are used for
comparison.

• Local Computing Only (LCO): All the computation
tasks are processed locally (local computing), i.e., ans =
0, 8n 2 N , s 2 S .

• Computation Offloading Only (COO): all the compu-
tation tasks are executed remotely by the MEC server,
i.e., an = 1, 8n 2 N . This scheme can be obtained by
executing our proposed algorithm with only S coalitions
and the following preference relation:

Fs �n Fk

, R (Fs) +R (Fk \ n) > R (Fs \ n) +R(Fk). (16)

• Heuristic Orthogonal Offloading (HOO): this scheme
follows the orthogonal design, where each subcarrier is
allocated to at most one UE. Typically, the number of
subcarriers S is smaller than the number of UEs N , thus
S UEs that achieve the highest individual computation
gains are allowed to utilize S subcarriers while the other
UEs execute their computation tasks locally.

B. Performance Comparison With the Optimal Scheme

In the first experiment, we compare the performance in
terms of computation overhead between our proposed ap-
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Fig. 4: Offloading percentage comparison of four schemes with
different numbers of UEs.

proach and the optimal scheme, in which all feasible combi-
nations of local computing and remote execution are assessed
and the optimal solution is achieved by finding the smallest
value of total computation overhead. It is worth noting again
that each UE can select between either local computing or
remote execution, whereas computation offloading can be
performed through one among S possible subcarriers. For
given N UEs and S subcarriers, the computational complexity
associated with the exhaustive search is O

�
NS+1

�
. Due to

the exponential computational complexity of exhaustive search
method, it is totally impractical to achieve the optimal solution
for large-scale NOMA-enabled MEC systems with a very large
number of UEs. Therefore, in this simulation, we consider only
3 coalitions while varying the number of UEs between 4 and
9. Fig. 3 shows that our proposed algorithm can perform close
to the optimal scheme. To further demonstrate the performance
optimality of our coalition game based algorithm, we measure
the average reduction in computation overhead by the optimal
solution compared with our proposed algorithm as follows:

Average Deviation =
1

5

8X

N=4

ZCG(N)� ZOS(N)

ZOS(N)
, (17)

where N denotes the number of UEs and ZCG(N) and ZOS(N)
denote the total computation overhead created by the pro-
posed algorithm and the optimal solution method, respectively.
Specifically, the average deviation between two algorithms is
about 11.20%. Another observation is that the performance
gap between our proposed algorithm and the optimal solution
becomes minimal when the numbers of UEs and subcarriers
are equal. We take S = 3 and N = 4 as an example, the per-
formance gap is only 100⇥ (5.077�4.962)/4.962 = 2.317%.
Combined with the distributed nature, this result corroborates
the advantages of our proposed game-based algorithm.

C. Percentage of Offloading UEs

To verify our proposed coalition game based algorithm, we
plot the percentage of offloading UEs as a function of the num-
ber of UEs or subcarriers. Actually, the offloading percentage,
denoted by poff, is the ratio of the number of offloading UEs
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Fig. 5: Offloading percentage comparison of four schemes with
different numbers of subcarriers.

to the total number UEs, i.e., poff =
P

n2N xn/N . Fig. 4
plots the percentage offloading of different schemes when the
number of coalitions is set to be 3 and the number of UEs
varies from 4 to 9. Followed the definitions of COO and
LOO, their percentages of offloading UEs are 100% and 0%,
respectively, regardless of the number of UEs. It indicates
that the COO (LCO) scheme forces all UEs to perform
computation offloading (local computing). Therefore, some
UEs may be not beneficial from remote execution (in the COO
scheme), while some UEs have to handle the tasks locally even
though they can benefit from computation offloading (in the
LCO scheme). Compared with the proposed algorithm, these
two schemes are simpler and easier to implement. However, as
will be shown later in Figs. 6, 7, 8, 9, and 10, their performance
is typically not good as our proposed algorithm, especially for
the COO (LCO) scheme in the case of massive connectivities
(redundant radio resources). From the figure, we can see that
for a given number of coalitions/subcarriers, the offloading
percentage reduces with the number of UEs. When the number
of UEs varies from 4 to 9, the offloading percentage drops
from 98% to 61% for our proposed approach and from 75% to
33% for the HOO scheme. The reason is that for the NOMA-
enabled MEC system with a small number of UEs, com-
putation offloading is highly favorable, thus yielding a high
offloading percentage. In contrast, UEs must compete with
more other UEs for preferred subcarriers over a limited amount
of radio resources. We note that in the proposed algorithm
and HOO scheme, computation offloading is performed only
when UEs have benefits from remote execution, otherwise UEs
prefer to locally handle their tasks. Therefore, our proposed
algorithm enables more UEs to benefit from remote execution
than the HOO scheme, which demonstrates effectiveness of the
coalition game approach and the outperformance of NOMA
over OMA.

Similarly, in Fig. 5, the number of UEs is set to be 10
while the number of coalitions varies between 4 and 8. With
the same number of UEs, the more coalitions we have, the
more percentage of offloading UEs we get. This is because
UEs can enjoy greater freedom of choice with increasing
coalitions. Regarding our proposed algorithm, the offloading
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Fig. 6: Comparison of total computation overhead among four
schemes under different numbers of UEs.

percentage increases from 76% to almost 100% when the
number of coalitions varies from 4 to 8. Once again, our
proposed algorithm grants benefit from remote execution to
more UEs than the HOO scheme.

D. Total Computation Overhead

Next, we evaluate our proposed algorithm in terms of total
computation overhead with different numbers of UEs and
subcarriers. The performance achieved by our coalition game
based algorithm is also compared with three other schemes:
LCO, COO, and HOO.

In Fig. 6, the number of coalitions/subcarriers is set to
be 3 (i.e., S = 3) and the number of UEs varies from 4
to 9. As observed from Fig. 6, the proposed coalition game
based approach helps reduce the total computation overhead.
Particularly, our algorithm has the smallest value in terms of
computation overhead in comparison with three other schemes.
As the number of UEs becomes larger, the total computation
overhead of all the schemes increases. In the case of the COO
scheme, the total computation overhead increases dramatically
when the number of UEs gets larger. It is because that
each UE needs to share the same resource with more UEs
on average when the number of UEs keeps increasing, thus
increasing the intra-coalition interference. Therefore, UEs are
more severely affected and have lower offloading possibilities.
In other words, some UEs are enforced to select remote
execution instead of local computing even though they do not
have any benefit from remote execution, i.e., local computing
makes the computation overhead smaller. Another observation
is that the COO algorithm is worse than the LCO algorithm
when the number of UEs gets larger.

In Fig. 7, the number of UEs is fixed at 10 and the
number of coalitions varies from 4 to 8. As the figure shows,
the proposed coalition game formulation outperforms all the
compared schemes. Using the same calculation as in (17),
averagely the proposed scheme outperforms the LCO, COO,
and HOO schemes about 250%, 76%, and 53%, respectively.
Obviously, the total computation overhead decreases as the
number of coalitions increases. The reason is simply that UEs
have higher probabilities to utilize their preferred subcarriers
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Fig. 7: Comparison of total computation overhead among four
schemes under different numbers of coalitions.
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Fig. 8: Comparison of total computation overhead among four
schemes under variant remote computing resources.

for computation offloading. It should be noted that the LCO
always gets the constant computation overhead since all the
UEs are required to handle their tasks locally, even though
computation offloading is beneficial. On the other hand, when
the number of coalitions becomes larger, the performance
gap between the proposed algorithm and the COO and HOO
schemes gets smaller. It is reasonable since each offloading UE
may not need to share its preferred subcarrier with the other
UEs. Accordingly, the effect of intra-coalition interference is
relieved and the uplink transmission time is therefore smaller
due to the higher offloading data rate.

To further obtain the performance comparison in terms of
computation overhead, we set the numbers of coalitions and
UEs to be 3 and 6, respectively. Fig. 8 indicates that the
total computation overhead of four algorithms decreases with
the amount of computing resources fn varied from 0.5 to
3 GHz that is allocated to the offloading UEs by the MEC
servers. We can see that the performance curves reduce slowly
with the increment of computing resources. It is reasonable
since the reduction of remote completion time would be less,
which is opposed to the case of small remote computing
resources, where the MEC completion time is comparable to
the uplink transmission time and local completion time as well.

?
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Fig. 9: Comparison of total computation overhead among four
schemes under different transmit power of UEs.

Compared with three other schemes, our algorithm generates
the lowest computation overhead. While the COO and HOO
create smaller computation overhead as the amount of remote
computing resources increases, the value of the LCO scheme
remains unchanged as the result that all UEs perform their
computation tasks locally regardless of fn, 8n 2 N . When
the amount of computing resources fn is set to be 3 GHz, our
proposed algorithm produces an improvement of 11.96% and
17.38% over the HOO and COO, respectively.

In Fig. 9, we plot the total computation overhead when the
transmit power of UEs varies from 50 to 300 mW. From
the figure, we can observe that the computation overhead
decreases as the transmit power of UEs increases. It is because
that the achievable transmission rate is higher with the transmit
power of UEs, thus reducing the uplink transmission time
and the remote computation overhead accordingly. Moreover,
with the transmit power of UEs increased, the decrease of
computation overhead becomes slighter. The reason is that as
the transmit power of UEs increases, the increase in achievable
rate is smaller. However, when the transmit power of UEs is
sufficiently large, the inter-coalition interference is more severe
and the transmission rate starts dropping, thus increasing the
computation overhead. For example, when the transmit power
pn is set to be 200, 250, and 300 mW, the total computation
overhead is 9.5474, 9.4606, and 9.4702, respectively. Com-
paring four schemes, the computation overhead created by our
proposed coalition game based algorithm is much lower than
other schemes. When the transmit power pn = 300 mW, the
computation overhead of our algorithm is lower than that of
the HOO and COO about 13.93% and 19.53%, respectively.

Fig. 10 shows similar observations to Fig. 9. In particular,
the total computation gain of the proposed algorithm, COO,
and HOO increases as the transmit power of UEs increases
and starts declining when the transmit power is large enough.
Note that the computation gain of a UE is defined as zero

in the case of local computing and as the difference between
remote and local computation overhead in the case of remote
execution. In addition, our proposed algorithm achieves the
largest computation gain compared with three other schemes.
When the transmit power of UEs is equal to 250 mW, the total
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Fig. 10: Total computation gain of four schemes with different
transmit power of UEs.

computation gain of our proposed algorithm is larger than that
of the HOO and COO about 22.36% and 38.05%, respectively.

E. Convergence Rate

Finally, we change the number of UEs from 4 to 9 and
vary the number of coalitions between 3 and 5 to analyze
the convergence of our proposed algorithm. Fig. 11 shows the
average number of switch operations required for the proposed
algorithm to reach the final Nash-stable partition Ffin. As
illustrated in the figure, the number of switch operations
becomes higher with the increment of the number of UEs.
In the case of 4 coalitions (i.e., 4 subcarriers), the average
number of switch operations is between 4 and 8. When the
number of UEs increases from 5 to 9, the number of switch
operations just raises by 1. As aforementioned, the exhaustive
search method needs to check NS+1 possible cases to obtain
the optimal solution. Thus, the number of switch operations for
the cases of 3, 4, and 5 coalitions is from 256 to 6561, 1024 to
59049, and 4096 to 531441, respectively. It is also depicted in
Fig. 11 that with the same number of UEs, the more coalitions
we have, the more switch operations the algorithm is required
to perform to find the final solution. The reason for this result
is that UEs have a wider range of selection alternatives for a
subcarrier with better channel condition so as to reduce the
uplink transmission time, hence causing an increase in the
number of switch operations. From the above observations,
our proposed algorithm greatly reduces the computational
complexity compared with the optimal solution method and
converges rapidly to the final Nash-stable partition.

V. CONCLUSION

In this paper, we have utilized coalitional games to develop
a cooperative scheme of computation offloading in NOMA-
enabled MEC systems. The optimization problem has been
modeled as a coalition formation game. Based on the intro-
duced game model, we have proposed a distributed algorithm
and demonstrated that the solution achieved by our proposed
algorithm is convergent and stable. Through extensive nu-
merical results under various simulation settings, we have
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Fig. 11: Convergence of the proposed algorithm versus the
number of switch operations under different numbers of UEs.

illustrated that our proposed coalition game based algorithm
is competitive to the optimal scheme by exhaustive search as
well as outperforming three baseline algorithms in terms of
computation overhead, offloading percentage, and number of
switch operations.
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