1. (a) (3 points) An estimator is a function of a sample of data to be drawn randomly from a population. An estimate is the numerical value of the estimator when it is actually computed using data from a specific sample.
(b) (3 points) X and Y being uncorrelated means they have no linear relationship, but they can have a nonlinear relationship and be not independent.
(c) (3 points) $S E\left(\widehat{\beta}_{1}\right)$ gets smaller when the variance of X_{i} gets larger.
(d) (3 points) The OLS estimator is a linear functions of Y_{1}, \ldots, Y_{n}, i.e. $\widehat{\beta}_{1}=\sum_{i=1}^{n} a_{i} Y_{i}$.
(e) (3 points) Under the conditional mean independence assumption, control variables can be correlated with residuals.
2. (a) (5 points) Let X be the test score for Korean students. We know

$$
\begin{aligned}
n_{1} & =500 \\
\bar{X}_{1} & =250 \\
s_{1} & =20 .
\end{aligned}
$$

Then, a 90% confidence interval for the average test score for Korean students is

$$
\begin{aligned}
\bar{X}_{1} \pm Z_{0.05} \cdot \frac{s_{1}}{\sqrt{n_{1}}} & =250 \pm 1.645 \cdot \frac{20}{\sqrt{500}} \\
& \approx[248.5287,251.4713]
\end{aligned}
$$

We have 90% confidence that the true average test score for Korean students falls between 248.5287 and 251.4713.
(b) (5 points) We know

$$
\begin{aligned}
n_{2} & =500 \\
\bar{X}_{2} & =262 \\
s_{2} & =13 .
\end{aligned}
$$

Prepare:

$H_{0}: \mu_{1}-\mu_{2}=0$ v.s. $H_{1}: \mu_{1}-\mu_{2} \neq 0$, where μ_{1} is mean score with original group, and μ_{2} is mean score with training group.
Let the significance level be 10%.

Calculate:

$$
\begin{aligned}
t^{*} & =\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \\
& =\frac{250-262}{\sqrt{\frac{20^{2}}{500}+\frac{13^{2}}{500}}} \\
& \approx-11.2489
\end{aligned}
$$

Conclude:

Because

$$
\left|t^{*}\right|>Z_{0.05}=1.645,
$$

we reject H_{0}. There is significant evidence that the course helped.
(c) (5 points) We know

$$
\begin{aligned}
n & =500 \\
\bar{X}_{d i f f} & =5 \\
s_{d i f f} & =20 .
\end{aligned}
$$

Prepare:

$H_{0}: \mu_{\text {diff }}=0$ v.s. $H_{1}: \mu_{\text {diff }} \neq 0$
Let the significance level be 10%.

Calculate:

$$
\begin{aligned}
t^{*} & =\frac{\bar{X}_{d i f f}-0}{\sqrt{\frac{s_{d i f f}^{2}}{n}}} \\
& =\frac{5-0}{\sqrt{\frac{20^{2}}{500}}} \\
& \approx 5.5902
\end{aligned}
$$

Conclude:

Because

$$
\left|t^{*}\right|>Z_{0.05}=1.645,
$$

we reject H_{0}. There is significant evidence that students perform better on their second attempt after taking course.
3. (a) (5 points) We know

$$
\begin{aligned}
& Y \sim\left(\mu, \sigma^{2}\right) \\
& \bar{Y} \sim\left(\mu, \frac{\sigma^{2}}{n}\right)
\end{aligned}
$$

Then,

$$
\begin{aligned}
E(W) & =E\left[\left(\frac{n-1}{n}\right) \bar{Y}\right] \\
& =\frac{n-1}{n} E(\bar{Y}) \\
& =\frac{n-1}{n} \mu \neq \mu .
\end{aligned}
$$

That is, W is biased. Moreover, the bias is

$$
E(W)-\mu=\frac{n-1}{n} \mu-\mu=-\frac{1}{n} \mu .
$$

(b) (5 points) By WLLN, we have

$$
\bar{Y} \xrightarrow{p} \mu .
$$

Also,

$$
\frac{n-1}{n} \xrightarrow{p} 1 .
$$

Thus,

$$
W=\frac{n-1}{n} \bar{Y} \xrightarrow{p} \mu .
$$

That is, W is consistent.
(c) (5 points)

$$
\begin{aligned}
\operatorname{Var}(W) & =\operatorname{Var}\left[\left(\frac{n-1}{n}\right) \bar{Y}\right] \\
& =\left(\frac{n-1}{n}\right)^{2} \operatorname{Var}(\bar{Y}) \\
& =\left(\frac{n-1}{n}\right)^{2} \frac{\sigma^{2}}{n} \\
& =\frac{(n-1)^{2}}{n^{3}} \sigma^{2}
\end{aligned}
$$

4. (a) (3 points) The objective function is

$$
\min _{\widehat{\alpha}} \sum_{i=1}^{n}\left(Y_{i}-\widehat{\alpha}\right)^{2} .
$$

By FOC, we have

$$
\begin{aligned}
\sum_{i=1}^{n} 2\left(Y_{i}-\widehat{\alpha}\right)(-1) & =0 \\
\sum_{i=1}^{n}\left(Y_{i}-\widehat{\alpha}\right) & =0 \\
\sum_{i=1}^{n} Y_{i}-n \widehat{\alpha} & =0
\end{aligned}
$$

Thus, the least squares estimator of α is

$$
\widehat{\alpha}=\frac{\sum_{i=1}^{n} Y_{i}}{n}=\bar{Y}
$$

(b) (3 points) By FOC, we know

$$
\begin{aligned}
\sum_{i=1}^{n} \widehat{u}_{i} & =\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right) \\
& =\sum_{i=1}^{n}\left(Y_{i}-\widehat{\alpha}\right)=0
\end{aligned}
$$

5. (4 points) Consider the simple regression

$$
S A L A R Y_{i}=\alpha_{0}+\alpha_{1} G P A_{i}+v_{i}
$$

We know

$$
\begin{aligned}
\operatorname{Cov}(G P A, B E A U T Y) & <0 \\
\operatorname{Cov}(B E A U T Y, S A L A R Y) & >0 \quad \Rightarrow \quad \beta_{2}>0 .
\end{aligned}
$$

Then,

$$
\widehat{\alpha}_{1} \xrightarrow{p} \alpha_{1}+\beta_{2} \cdot \frac{\operatorname{Cov}(G P A, B E A U T Y)}{\sigma_{G P A}^{2}}<\alpha_{1} .
$$

6. (a) (5 points) The proportion of fast-food restaurants in the data located in Pennsylvania is

$$
1-0.81=0.19=19 \%
$$

(b) (5 points) Prepare:
$H_{0}: \beta_{\text {PrpBlack }}=0$ v.s. $H_{1}: \beta_{\text {PrpBlack }} \neq 0$
Let the significance level be 5%.

Calculate:

$$
t^{*}=\frac{0.0649-0}{0.0240} \approx 2.7042
$$

Conclude:

Because

$$
\left|t^{*}\right|>Z_{0.025}=1.96,
$$

we reject H_{0}. There is significant evidence that the coefficient on PrpBlack in Model 1 is different from 0 . If the share of blacks increases by 10 percentage points, PriceSoda is expected to increase by $\$ 0.0649 \times 0.1 \approx \$ 0.0065$ on average.
(c) (5 points)

$$
\widehat{\text { PriceSod }_{2}}=0.9563+0.1150 \text { PrpBlack }_{i}+0.0000016 \text { Income }_{i}
$$

(d) (5 points) When we control for income, the coefficient on PrpBlack in Model 2 is larger than in Model 1. Because

$$
\begin{aligned}
\operatorname{Cov}(\text { PrpBlack, Income }) & <0 \\
\operatorname{Cov}(\text { Income }, \text { PriceSoda }) & >0
\end{aligned}
$$

$\widehat{\beta}_{\text {PrpBlack }}$ in Model 2 is more positive than in Model 1.
(e) (5 points) Prepare:
$H_{0}: \beta_{N J}=0$ v.s. $H_{1}: \beta_{N J} \neq 0$
Let the significance level be 5%.

Calculate:

$$
t^{*}=\frac{0.0775-0}{0.0098} \approx 7.9082
$$

Conclude:

Because

$$
\left|t^{*}\right|>Z_{0.025}=1.96,
$$

we reject H_{0}. There is significant evidence that the coefficient on $N J$ in Model 3 is different from $0 . \widehat{\beta}_{N J}$ means that other things being equal, PriceSoda of New Jersey is $\$ 0.0775$ higher than that of Pennsylvania on average.
(f) (5 points)

$$
\begin{aligned}
\bar{R}^{2} & =1-\frac{n-1}{n-k-1}\left(1-R^{2}\right) \\
& =1-\frac{401-1}{401-3-1}(1-0.1689) \approx 0.1626
\end{aligned}
$$

It means that the model explains 16.26% of the variability in PriceSoda.
(g) (5 points) Prepare:
$H_{0}: \beta_{K F C}=0$ v.s. $H_{1}: \beta_{K F c} \neq 0$
Let the significance level be 5%.

Calculate:

$$
t^{*}=\frac{0.0252-0}{0.0118} \approx 2.1356
$$

Conclude:

Because

$$
\left|t^{*}\right|>Z_{0.025}=1.96,
$$

we reject H_{0}. There is significant evidence that the coefficient on $K F C$ in Model 4 is different from $0 . \widehat{\beta}_{K F C}$ means that other things being equal, PriceSoda in Kentucky Fried Chicken is $\$ 0.0252$ higher than in Wendy's.
(h) (5 points) Prepare:
$H_{0}: \beta_{B K}=\beta_{K F C}=\beta_{R R}=0$ v.s. $H_{1}:$ At least one of the coefficients in H_{0} is not 0.
(i) (5 points) Yes, we can. The estimated coefficients are

$$
\begin{aligned}
& \widehat{\gamma}_{4}=0.8954+0.0796=0.975 \\
& \widehat{\gamma}_{5}=0.8954+0.0252=0.9206 \\
& \widehat{\gamma}_{6}=0.8954+0.1274=1.0228 \\
& \widehat{\gamma}_{7}=0.8954 .
\end{aligned}
$$

