CRACKING
CODING INTERVIEW

189 PROGRAMMING QUESTIONS & SOLUTIONS

GAYLE LAARKMANN MCDOWELL 6TH

Author of Cracking the PM Interview and Cracking the Tech Career

the

CODING INTERVIEW

GTH EDITION

ALSO BY GAYLE LAAKMANN MCDOWELL

CRACKING THE PM INTERVIEW

How TO LAND A PRODUCT MANAGER JOB IN TECHNOLOGY

CRACKING THE TECH CAREER

INSIDER ADVICE ON LANDING A JOB AT GOOGLE, MICROSOFT, APPLE, OR ANY TOP TECH COMPANY

CRACKING
CODING INTERVIEW

6th Edition
189 Programming Questions and Solutions

GAYLE LAAKMANN MCDOWELL

Founder and CEO, CareerCup.com

CareerCup, LLC
Palo Alto, CA

CRACKING THE CODING INTERVIEW, SIXTH EDITION
Copyright © 2015 by CareerCup.

All rights reserved. No part ofthis book may be reproduced in any form by any electronic or me-
chanical means, including information storage and retrieval systems, without permission in writing
from the author or publisher, except by a reviewer who may quote briefpassages in a review.

Published by CareerCup, LLC, Palo Alto, CA. Compiled Feb 10,2016.

For more information, contact support)®caieercup.com.

978-0-9847828-5-7 (ISBN 13)

For Davis and Tobin,

and all the things that bring us joy in life.

Introduction

Introduction. 2
l. The Interview Process. 4
Why? 4
How Questions are Selected. 6
It's All Relative. 7

VI.

VIM

Frequently Asked Questions. L oL L Lo LT
Behind the Scenes .8

The Microsoft Interview.09

The Amazon Interview. 10
The Google Interview. 10
The Apple Interview. 11
The Facebook Interview. 12
The Palantir Interview. 13

Special Situations. L .. a5
Experienced Candidates. 15
Testersand SDETs.« a5
Product (and Program) Management16

Dev Lead and Managers. Lo e AT

Startups. 18
Acquisitions and Acquihires. 19
For Interviewers. 21
Before the Interview. 26
Getting the Right Experience. 26

Writing a Great Resume. L L0 oL 2T

Preparation Map. 30
Behavioral Questions. 32
Interview Preparation Grid. 32
KnowYour Technical Projects. 33

Responding to Behavioral Questions. 34

So, tell me aboutyourself.. 36
BigO. . . . 38
An Analogy. 38

Time Complexity. L ... e ..o ... 38
Space Complexity. 40
Drop the Constants. 41

Drop the Non-DominantTerms. A2

Cracking the Coding Interview, 6th Edition

VIt.

VIIIL.

Introduction

Multi-Part Algorithms: Add vs. Multiply. A2
Amortized Time. 43
Log N Runtimes. 44
Recursive Runtimes. 44
Examples and Exercises. 45
Technical Questions. 60
Howto Prepare. 60
WhatYou Need To Know. 60
Walking Through a Problem. 62
Optimize & Solve Technique #1: Look for BUD.| 67
Optimize & Solve Technique #2: DfY (Do It Yourself).| 69
Optimizes Solve Technique #3: Simplify and Generalize./ 71
Optimized Solve Technique #4: Base Case and Build., 71
Optimize & Solve Technique #5: Data Structure Brainstorm. 72

Best Conceivable Runtime (BCR). 12
Handling Incorrect Answers. 76

When You've Heard a Question Before. 16

The "Perfect" Language for Interviews. 76
What Good Coding Looks Like. 77
Don't Give Upl 81
The Offer and Beyond. 82
Handling Offers and Rejection. 82
Evaluating the Offer. 83
Negotiation. 84
Onthedob. 85
Interview Questions. 87
Data Structures. 88
Chapter 1 | Arrays and Strings. 88
Hash Tables. 88
ArrayList & Resizable Arrays. 89
StringBuilder. 89
Chapter 2 | Linked Lists. 92
Creating a Linked List. 92
Deleting a Node from a Singly Linked List 93
The "Runner" Technique. 93

Recursive Problems. 93

CrackingTheCodinglInterview.com 16th Edition Vi

Introduction

VIM

Chapter 3 j Stacksand Queues. 96
Implementing a Stack. 96
Implementinga Queue. 97

Chapter4 | Trees and Graphs. 100
Types of Trees. 100
Binary Tree Traversal 103
Binary Heaps (Min-Heaps and Max-Heaps). 103
Tries (Prefix Tre€s). 105
Graphs. 105
Graph Search. 107

Concepts and Algorithms. 112

Chapter 5j Bit Manipulation. 112
Bit Manipulation By Hand. 112
Bit Facts and Tricks. 112
Two's Complement and Negative Numbers. 113
Arithmetic vs. Logical Right Shift 113
Common Bit Tasks: Getting and Setting. 114

Chapter 6 j Math and Logic Puzzles. 117
Prime Numbers. o S . . . e P 17
Probability. 119
Start Talking. 121
Develop Rules and Patterns. 121
Worst Case Shifting. 122
Algorithm Approaches. 122

Chapter 7 | Object-Oriented Design. 125
How to Approach. 125
Design Patterns. 126

Chapter 81 Recursion and Dynamic Programming. 130
How to Approach. 130
Recursive vs. lterative Solutions. 131
Dynamic Programming & Memoization. 131

Chapter 9 | System Design and Scalability. 137
Handling the Questions. 137
Design: Step-By-Step. 138
Algorithms that Scale: Step-By-Step. 139
KeyConcepts. 140

Cracking the Coding Interview, 6th Edition

Introduction

Considerations. 142
Thereis no "perfect"system. 143
Example Problem. 143
Chapter 101 Sorting and Searching. 146
Common Sorting Algorithms. 146
Searching Algorithms. 149
Chapter 11 [Testing. 152
What the Interviewer Is Looking For. 152
Testing a Real World Object. 153
Testing a Piece of Software. 154
Testing a Function. 155
Troubleshooting Questions. 156
Knowledge Based. 158
Chapter 12] Cand C++ 158
Classes and Inheritance. 158
Constructors and Destructors. 159
Virtual Functions. 159
Virtual Destructor. 160
Default Values. 161
OperatorOverloading. 161
Pointers and References. 162
Templates. 163
Chapter 13 [Java. 165
How to Approach. 165
Overloading vs. Overriding. 165
Collection FrameWOrK. 166
Chapter 141 Databases. 169
SQL Syntaxand Variations. 169
Denormalized vs. Normalized Databases. 169
SQi. Statements. 169
Small Database Design. 171
Large Database Design. 172
Chapter 15 [Threadsand Locks. 174
ThreadsindJava. 174
Synchronization and Locks. 176
Deadlocks and Deadlock Prevention. 179

CrackingTheCodinglnterview.com 16th Edition \

Introduction
Additional Review Problems. 181
Chapter 16 | Moderate. 181
Chapter 17 | Hard. 186
X. Solutions. 191
Data Structures. 192
Concepts and Algorithms. 276
Knowledge Based. 422
Additional Review Problems. 462
XI. Advanced TOpPICS. 628
Useful Math. 629
Topological Sort 832
Dijkstra's Algorithm, 633
Hash Table Collision Resolution. 636
Rabin-Karp Substring Search. 636
AVLTrees. 637
Red-BlackTrees. 639
MapReduce. 642
Additional Studying. 644
XIl. Code Library. s 645
HashMapList<T, E> 646
TreeNode (Binary Search Tree). 647
LinkedListNode (Linked List). 649
Trie & TrieNode. 0 L Lo Lo L. B49
XU Hints. 652
Hints for Data Structures. 653
Hints for Concepts and Algorithms. 662
Hints for Knowledge-Based Questions. 676
Hints for Additional Review Problems. 679
XIV. Aboutthe Author. e 696

Join us at www.CrackingTheCodinginterview.com to download the complete solutions,
contribute or view solutions in other programming languages, discuss problems from this book
with other readers, ask questions, report issues, view this book's errata, and seek additional advice.

VIM Cracking the Coding Interview, 6th Edition

http://www.CrackingTheCodinglnterview.com

Foreword

Dear Reader,
Let's get the introductions out of the way.

| am not a recruiter, | am a software engineer. And as such,! know what it's like to be asked to whip up bril-
liant algorithms on the spot and then write flawless code on a whiteboard. 1 know because I've been asked
to do the same thing—in interviews at Google, Microsoft, Apple, and Amazon, among other companies,

| also know because I've been on the other side of the table, asking candidates to do this. I've combed
through stacks of resumes to find the engineers who | thought might be able to actually pass these inter-
views, I've evaluated them as they solved—or tried to solve—challenging questions. And I've debated in
Google's Hiring Committee whether a candidate did well enough to merit an offer. | understand the full
hiring circle because I've been through it all, repeatedly.

And you, reader, are probably preparing for an interview, perhaps tomorrow, next week, or next year. | am
here to help you solidify your understanding of computer science fundamentals and then learn how to
apply those fundamentals to crack the coding interview.

The 6th edition of Cracking the Coding Interview updates the Sth edition with 70% more content: additional
questions, revised solutions, new chapter introductions, more algorithm strategies, hints for all problems,
and other content. Be sure to check out our website, CrackingTheCodingtnterview.com, to connect with
other candidates and discover new resources.

I'm excited for you and for the skills you are going to develop. Thorough preparation will give you a wide
range of technical and communication skills. It will be well worth it, no matter where the effort takes you!

| encourage you to read these introductory chapters carefully. They contain important insight that just
might make the difference between a "hire"and a"no hire."

And remember—interviews are hard! In my years of interviewing at Google, | saw some interviewers
ask "easy" questions while others ask harder questions. But you know what? Getting the easy questions
doesn't make it any easier to get the offer. Receiving an offer is not about solving questions flawlessly (very
few candidates do!). Rather, it is about answering questions better than other candidates. So don't stress out
when you get a tricky question—everyone else probably thought it was hard too. It's okay to not be flaw-
less.

Study hard, practice—and good luck!
GayleL. McDowell

Founder/CEO, CareerCup.com
Author of Crggking (fig PM Interview and Cracking the Tech Career

CraekingTheCodinglnterview.com | Sth Edition 1

Introduction

Something's Wrong

We walked out of the hiring meeting frustrated—again. Of the ten candidates we reviewed that day, none
would receive offers. Were we being too harsh, we wondered?

I, in particular, was disappointed. We had rejected one of my candidates. A former student. One | had
referred. He had a 3.73 GPA from the University of Washington, one of the best computer science schools
in the world, and had done extensive work on open-source projects. He was energetic. He was creative. He
was sharp. He worked hard. He was a true geek in all the best ways.

But | had to agree with the rest of the committee: the data wasn't there. Even if my emphatic recommenda-
tion could sway them to reconsider, he would surely get rejected in the later stages of the hiring process.
There were just too many red flags.

Although he was quite intelligent, he struggled to solve the interview problems. Most successful candi-
dates could fly through the first question, which was a twist on a well-known problem, but he had trouble
developing an algorithm. When he came up with one, he failed to consider solutions that optimized for
other scenarios. Finally, when he began coding, he flew through the code with an initial solution, but it
was riddled with mistakes that he failed to catch. Though he wasn't the worst candidate we'd seen by any
measure, he was far from meeting the "bar." Rejected.

When he asked for feedback over the phone a couple of weeks later, | struggled with what to tell him. Be
smarter? No, 1 knew he was brilliant. Be a better coder? No, his skills were on par with some of the best I'd
seen.

Like many motivated candidates, he had prepared extensively. He had read K&R's classic C book, and he'd
reviewed CLRS'famous algorithms textbook. He could describe in detail the myriad of ways of balancing a
tree, and he could do things in C that no sane programmer should ever want to do.

| had to tell him the unfortunate truth: those books aren't enough. Academic books prepare you for fancy
research, and they wilt probably make you a better software engineer, but they're not sufficient for inter-
views. Why? I'll give you a hint: Your interviewers haven't seen red-black trees since they were in school
either.

To crack the coding interview, you need to prepare with real interview questions. You must practice on
real problems and learn their patterns. It's about developing a fresh algorithm, not memorizing existing
problems.

Cracking the Coding Interview is the result of my first-hand experience interviewing at top companies and
later coaching candidates through these interviews. It is the result of hundreds of conversations with candi-
dates. It is the result of the thousands of questions contributed by candidates and interviewers. And it's the
result of seeing so many interview questions from so many firms. Enclosed in this book are 189 of the best
interview questions, selected from thousands of potential problems.

My Approach

The focus of Cracking the Coding Interview is algorithm, coding, and design questions. Why? Because
while you can and will be asked behavioral questions, the answers will be as varied as your resume. Like-
wise, while many firms will ask so-called "trivia"questions (e.g.,"What is a virtual function?"), the skills devel-
oped through practicing these questions are limited to very specific bits of knowledge. The book will briefly
touch on some of these questions to show you what they're like, but i have chosen to allocate space to areas
where there's more to learn.

VIM Cracking the Coding Interview, 6th Edition

Introduction

My Passion

Teaching is my passion. | iove helping people understand new concepts and giving them tools to help them
excel in their passions.

My first official experience teaching was in college at the University of Pennsylvania, when | became a
teaching assistant for an undergraduate computer science course during my second year. | went on to TA
for several other courses, and | eventually launched my own computer science course there, focused on
hands-on skills.

As an engineer at Google, training and mentoring new engineers were some of the things | enjoyed most. |
even used my "20% time" to teach two computer science courses at the University of Washington.

Now, years later, | continue to teach computer science concepts, but this time with the goal of preparing
engineers at startups for their acquisition interviews, t've seen their mistakes and struggles, and I've devel-
oped techniques and strategies to help them combat those very issues.

Cracking the Coding Interview, Cracking the PM Interview, Cracking the Tech Career, and CareerCup
reflect my passion for teaching. Even now, you can often find me "hanging out"at CareerCup.com, helping
users who stop by for assistance.

Join us.

GayleL. McDowell

CrackingTheCodinglnterview.com 16th Edition VII

The Interview Process

At most of the top tech companies (and many other companies), algorithm and coding problems form the
largest component of the interview process. Think of these as problem-solving questions. The interviewer
is looking to evaluate your ability to solve algorithmic problems you haven't seen before.

Very often, you might get through only one question in an interview. Forty-five minutes is not a long time,
and it's difficult to get through several different questions in that time frame.

You should do your best to talk out loud throughout the problem and explain your thought process. Your
interviewer might jump in sometimes to help you; let them. It's norma) and doesn't really mean that you're
doing poorly. (That said, of course not needing hints is even better.)

At the end of the interview, the interviewer will walkaway with a gut feel for how you did, A numeric score
might be assigned to your performance, but it's not actually a quantitative assessment.There's no chart that
says how many points you get for different things. It just doesn't work like that.

Rather, your interviewer will make an assessment of your performance, usually based on the following:

» Analytical skills: Did you need much help solving the problem? How optimal was your solution? How
long did it take you to arrive at a solution? If you had to design/architect a new solution, did you struc-
ture the problem well and think through the tradeoffs of different decisions?

» Coding skills: Were you able to successfully translate your algorithm to reasonable code? Was it clean
and well-organized? Did you think about potential errors? Did you use good style?

» Technical knowledge / Computer Science fundamentals: Do you have a strong foundation in computer
science and the relevant technologies?

» Experience: Have you made good technical decisions in the past? Have you built interesting, challenging
projects? Have you shown drive, initiative, and other important factors?

» Culture fit/ Communication skills: Do your personality and values fit with the company and team? Did
you communicate well with your interviewer?

The weighting of these areas will vary based on the question, interviewer, role, team, and company. In a
standard algorithm question, it might be almost entirely the first three of those.

« Why?

This is one of the most common questions candidates have as they get started with this process. Why do
things this way? After all,

1. Lots of great candidates don't do well in these sorts of interviews.

26
Cracking the Coding Interview, 6th Edition

11 The Interview Process

2. You could look up the answer if it did ever come up.

3. You rarely have to use data structures such as binary search trees in the real world. If you did need to,
you could surely learn it.

4. Whiteboard coding is an artificial environment. You would never code on the whiteboard in the real
world, obviously.

These complaints aren't without merit. In fact, | agree with all of them, at least in part.

At the same time, there is reason to do things this way for some—not all—positions. It's not important that
you agree with this logic, but it is a good idea to understand why these questions are being asked. It helps
offer a little insight into the interviewer's mindset.

False negatives are acceptable.
This is sad (and frustrating for candidates), but true.

From the company's perspective, it's actually acceptable that some good candidates are rejected. The
company is out to build a great set of employees.They can accept that they miss out on some good people.
They'd prefer not to, of course, as it raises their recruiting costs. It is an acceptable tradeoff, though, provided
they can still hire enough good people.

They're far more concerned with false positives: people who do well in an interview but are not in fact very
good.

Problem-solving skills are valuable.

If you're able to work through several hard problems (with some help, perhaps), you're probably pretty
good at developing optimal algorithms. You're smart.

Smart people tend to do good things, and that's valuable at a company. It's not the only thing that matters,
of course, but it is 3 really good thing.

Basic data structure and algorithm knowledge is useful.

Many interviewers would argue that basic computer science knowledge is, in fact, useful. Understanding
trees, graphs, lists, sorting, and other knowledge does come up periodically. When it does, it's really valu-
able.

Could you learn it as needed? Sure. But it's very difficult to know that you should use a binary search tree if
you don't know of its existence. And if you do know of its existence, then you pretty much know the basics.

Other interviewers justify the reliance on data structures and algorithms by arguing that it's a good "proxy."
Even if the skiils wouldn't be that hard to learn on their own, they say it's reasonably well-correlated with
being a good developer. It means that you've either gone through a computer science program (in which
case you've learned and retained a reasonably broad set of technical knowledge) or learned this stuff on
your own. Either way, it's a good sign.

There's another reason why data structure and algorithm knowledge comes up: because it's hard to ask
problem-solving questions that don't involve them. It turns out that the vast majority of problem-solving
questions involve some of these basics. When enough candidates know these basics, it's easy to get into a
pattern of asking questions with them.

CrackingTheCodinglnterview.com 16th Edition 5

11 The Interview Process

Whiteboards let you focus on what matters.

It's absolutely true that you'd struggle with writing perfect code on a whiteboard. Fortunately, your inter-
viewer doesn't expect that. Virtually everyone has some bugs or minor syntactical errors.

The nice thing about a whiteboard is that, in some ways, you can focus on the big picture. You don't have a
compiler, so you don't need to make your code compile. You don't need to write the entire class definition
and boilerplate code. You get to focus on the interesting, "meaty" parts of the code: the function that the
question is really all about.

That's not to say that you should just write pseudocode or that correctness doesn't matter. Most inter-
viewers aren't okay with pseudocode, and fewer errors are better.

Whiteboards also tend to encourage candidates to speak more and explain their thought process. When a
candidate is given a computer, their communication drops substantially.

But it's not for everyone or every company or every situation.
The above sections are intended to help you understand the thought process of the company.

My personal thoughts? For the right situation, when done well, it's a reasonable judge of someone's
problem-solving skills, in that people who do well tend to be fairly smart.

However, it's often not done very well. You have bad interviewers or people who just ask bad questions.

It's also not appropriate for all companies. Some companies should value someone's prior experience more
or need skills with particular technologies. These sorts of questions don't put much weight on that.

It also won't measure someone's work ethic or ability to focus. Then again, almost no interview process can
really evaluate this.

This is not a perfect process by any means, but what is? All interview processes have their downsides.

I'll leave you with this: it is what it is, so let's do the best we can with it.

¢ How Questions are Selected

Candidates frequently ask what the "recent" interview questions are at a specific company. Just asking this
question reveals a fundamental misunderstanding of where questions come from.

At the vast majority of companies, there are no lists of what interviewers should ask. Rather, each inter-
viewer selects their own questions.

Since it's somewhat of a "free for all" as far as questions, there's nothing that makes a question a "recent
Google interview question" other than the fact that some interviewer who happens to work at Google just
so happened to ask that question recently.

The questions asked this year at Google do not really differ from those asked three years ago. !n fact, the
questions asked at Google generally don't differ from those asked at similar companies (Amazon, Facebook,
etc.).

There are some broad differences across companies. Some companies focus on algorithms (often with some
system design worked in), and others really like knowledge-based questions. But within a given category
of question, there is little that makes it "belong" to one company instead of another. A Google algorithm
question is essentially the same as a Facebook algorithm question.

6 Cracking the Coding Interview, 6th Edition

11 The Interview Process

¢ It's All Relative

If there's no grading system, how are you evaluated? How does an interviewer know what to expect of you?
Good question. The answer actually makes a lot of sense once you understand it-

Interviewers assess you relative to other candidates on that same question by the same interviewer. It's a
relative comparison.

For example, suppose you came up with some cool new brainteaser or math problem. You ask your friend
Alex the question, and it takes him 30 minutes to solve it. You ask Bella and she takes SO minutes. Chris is
never able to solve it, Dexter takes 15 minutes, but you had to give him some major hints and he probably
would have taken far longer without them. Ellie takes 10—and comes up with an alternate approach you
weren't even aware of. Fred takes 35 minutes.

You'll walk away saying, "Wow, Ellie did realty well. I'll bet she's pretty good at math." (Of course, she couid
have just gotten lucky. And maybe Chris got unlucky. You might ask a few more questions just to really
make sure that it wasn't good or bad luck.)

Interview questions are much the same way. Your interviewer develops a fee! for your performance by
comparing you to other people. It's not about the candidates she's interviewing that week. It's about all the
candidates that she's ever asked this question to.

For this reason, getting a hard question isn't a bad thing. When it's harder for you, it's harder for everyone, ft
doesn't make it any less likely that you'll do well.

¢ Frequently Asked Questions

| didn't hear back immediately after my interview. Am 1 rejected?

No, There are a number of reasons why a company's decision might be delayed. A very simple explanation
is that one of your interviewers hasn't provided their feedback yet. Very, very few companies have a policy
of not responding to candidates they reject.

If you haven't heard back from a company within 3 - 5 business days after your interview, check in (politely)
with your recruiter.

Can | re-apply to a company after getting rejected?

Almost always, but you typically have to wait a bit (6 months to a 1 year). Your first bad interview usually
won't affect you too much when you re-interview. Lots of people get rejected from Google or Microsoft and
later get offers from them.

CrackingTheCodinglnterview.com 16th Edition 5

Behind the Scenes

Most companies conduct their interviews in very simitar ways. We will offer an overview of how companies
interview and what they're looking for. This information should guide your interview preparation and your
reactions during and after the Interview.

Once you are selected for an interview, you usually go through a screening interview. This is typically
conducted over the phone. College candidates who attend top schools may have these interviews in-person.

Don't let the name fool you; the "screening” interview often involves coding and algorithms questions, and
the bar can be just as high as it is for in-person interviews. If you're unsure whether or not the interview will
be technical, ask your recruiting coordinator what position your interviewer holds (or what the interview
might cover). An engineer will usually perform a technical interview.

Many companies have taken advantage of online synchronized document editors, but others will expect
you to write code on paper and read it back over the phone. Some interviewers may even give you "home-
work" to solve after you hang up the phone orjust ask you to email them the code you wrote.

You typically do one or two screening interviewers before being brought on-site.

In an on-site interview round, you usually have 3 to 6 in-person interviews. One of these is often over lunch.
The lunch interview is usually not technical, and the interviewer may not even submit feedback. This is a
good person to discuss your interests with and to ask about the company culture. Your other interviews wilt
be mostly technical and will involve a combination of coding, algorithm, design/architecture, and behav-
ioral/experience questions.

The distribution of questions between the above topics varies between companies and even teams due to
company priorities, size, and just pure randomness, interviewers are often given a good deal of freedom in
their interview questions.

After your interview, your interviewers will provide feedback in some form, tn some companies, your inter-
viewers meet together to discuss your performance and come to a decision. In other companies, inter-
viewers submit a recommendation to a hiring manager or hiring committee to make a final decision. In
some companies, interviewers don't even make the decision; their feedback goes to a hiring committee to
make a decision.

Most companies get back after about a week with next steps (offer, rejection, further interviews, or just an
update on the process). Some companies respond much sooner (sometimes same day!) and others take
much longer.

If you have waited more than a week, you should follow up with your recruiter. If your recruiter does not
respond, this does not mean that you are rejected (at least not at any major tech company, and almost any

26 Cracking the Coding Interview, 6th Edition

Il'| Behind the Scenes

other company). Let me repeat that again; not responding indicates nothing about your status. The inten-
tion is that ali recruiters should tell candidates once a final decision is made.

Delays can and do happen. Follow up with your recruiter if you expect a delay, but be respectful when you
do. Recruiters are just like you. They get busy and forgetful too.

e The Microsoft Interview

Microsoft wants smart people. Geeks. People who are passionate about technology. Vou probably won't be
tested on the ins and outs of C++ APIs, but you will be expected to write code on the board.

In a typical interview, you'll show up at Microsoft at some time in the morning and fill out initial paperwork.
You'll have a short interview with a recruiter who will give you a sample question. Your recruiter is usually
there to prep you, not to grill you on technical questions. If you get asked some basic technical questions,
it may be because your recruiter wants to ease you into the interview so that you're less nervous when the
"real" interview starts.

Be nice to your recruiter. Your recruiter can be your biggest advocate, even pushing to re-intervtew you if
you stumbled on your first interview. They can fight for you to be hired-or notl

During the day, you'll do four or five interviews, often with two different teams. Unlike many companies,
where you meet your interviewers in a conference room, you'll meet with your Microsoft interviewers in
their office. This is a great time to look around and get a feel for the team culture.

Depending on the team, interviewers may or may not share their feedback on you with the rest of the
interview loop.

When you complete your interviews with a team, you might speak with a hiring manager (often called the
"as app" short for "as appropriate"), if so, that's a great sign! It likely means that you passed the interviews
with a particular team. It's now down to the hiring manager's decision.

You might get a decision that day, or it might be a week. After one week of no word from HR, send a friendly

email asking for a status update.

If your recruiter isn't very responsive, it's because she's busy, not because you're being silently rejected.

Definitely Prepare:
"Why do you want to work for Microsoft?"

In this question, Microsoft wants to see that you're passionate about technology. A great answer might be,
"I've been using Microsoft software as long as | can remember, and I'm really impressed at how Microsoft
manages to create a product that is universally excellent. For example, I've been using Visual Studio recently
to learn game programming, and its APIs are excellent." Note how this shows a passion for technology!

What's Unique:
You'll only reach the hiring manager if you've done well, so if you do, that's a great sign!

Additionally, Microsoft tends to give teams more individual control, and the product set is diverse. Experi-
ences can vary substantially across Microsoft since different teams look for different things.

CrackingTheCodinglnterview.com | 6th Edition 11

Il | Behind the Scenes

e The Amazon Interview

Amazon's recruiting process typically begins with a phone screen in which a candidate interviews with a
specific team. A small portion of the time, a candidate may have two or more interviews, which can indicate
either that one of their interviewers wasn't convinced or that they are being considered for a different team
or profile. In more unusual cases, such as when a candidate is local or has recently interviewed for a different
position, a candidate may only do one phone screen.

The engineer who interviews you will usually ask you to write simple code via a shared document editor.
They will also often ask a broad set of questions to explore what areas of technology you're familiar with.

Next, you fly to Seattle (or whichever office you're interviewing for) for four or five interviews with one or
two teams that have selected you based on your resume and phone interviews. You will have to code on a
whiteboard, and some interviewers will stress other skills. Interviewers are each assigned a specific area to
probe and may seem very different from each other. They cannot see the other feedback until they have
submitted their own, and they are discouraged from discussing it until the hiring meeting.

The"bar raiser "interviewer is charged with keeping the interview bar high. They attend special training and
will interview candidates outside their group in order to balance out the group itself. If one interview seems
significantly harder and different, that's most likely the bar raiser. This person has both significant experi-
ence with interviews and veto power in the hiring decision. Remember, though: just because you seem to
be struggling more in this interview doesn't mean you're actually doing worse. Your performance isjudged
relative to other candidates; it's not evaluated on a simple "percent correct" basis.

Once your interviewers have entered their feedback, they will meet to discuss it. They will be the people
making the hiring decision.

While Amazon's recruiters are usually excellent at following up with candidates, occasionally there are
delays. If you haven't heard from Amazon within a week, we recommend a friendly email.

Definitely Prepare:

Amazon cares a lot about scale. Make sure you prepare for scalability questions. You don't need a back-
ground in distributed systems to answer these questions. See our recommendations in the System Design
and Scalability chapter.

Additionally, Amazon tends to ask a lot of questions about object-oriented design. Check out the Object-
Oriented Design chapter for sample questions and suggestions.

What's Unique:

The Bar Raiser is brought in from a different team to keep the bar high. You need to impress both this person
and the hiring manager,

Amazon tends to experiment more with its hiring process than other companies do. The process described
here is the typical experience, but due to Amazon's experimentation, it's not necessarily universal.

* The Google Interview

There are many scary rumors floating around about Google interviews, but they're mostly just that: rumors.
The interview is not terribly different from Microsoft's or Amazon's,

14 Cracking the Coding interview, 6th Edition

Il | Behind the Scenes

A Google engineer performs the first phone screen, so expect tough technical questions. These questions
may involve coding, sometimes via a shared document. Candidates are typically held to the same standard
and are asked similar questions on phone screens as in on-site interviews.

On your on-site interview, you'll interview with four to six people, one of whom will be a lunch interviewer.
Interviewer feedback is kept confidential from the other interviewers, so you can be assured that you enter
each interview with blank slate. Your lunch interviewer doesn't submit feedback, so this is a great opportu-
nity to ask honest questions.

Interviewers are typically not given specific focuses, and there is no "structure" or "system" as to what you're
asked when. Each interviewer can conduct the interview however she would like.

Written feedback is submitted to a hiring committee (HC) of engineers and managers to make a hire /
no-hire recommendation. Feedback is typically broken down into four categories (Analytical Ability, Coding,
Experience, and Communication) and you are given an overall score from 1.0 to 4.0.The HC usually does not
include any of your interviewers. Ifit does, it was purely by random chance.

To extend an offer, the HC wants to see at least one interviewer who is an "enthusiastic endorser," In other
words, a packet with scores of 3.6,3.1,3,1 and 2.6 is better than all 3,1s.

You do not necessarily need to excel in every interview, and your phone screen performance is usually not
a strong factor in the final decision.

If the hiring committee recommends an offer, your packet will go to a compensation committee and then
to the executive management committee. Returning a decision can take several weeks because there are
so many stages and committees.

Definitely Prepare:

As a web-based company, Google cares about how to design a scalable system. So, make sure you prepare
for questions from System Design and Scalability.

Google puts a strong focus on analytical (algorithm) skills, regardless of experience. You should be very well
prepared for these questions, even if you think your prior experience should count for more.

What's Different:

Your interviewers do not make the hiring decision. Rather, they enter feedback which is passed to a hiring
committee. The hiring committee recommends a decision which can be—though rarely is—rejected by
Google executives.

* The Apple Interview

Much like the company itself, Apple's interview process has minimal bureaucracy. The interviewers will be
looking for excellent technical skills, but a passion for the position and the company is also very important.
While it's not a prerequisite to be a Mac user, you should at least be familiar with the system.

The interview process usually begins with a recruiter phone screen to get a basic sense of your skills,
followed up by a series of technical phone screens with team members.

Once you're invited on campus, you'll typically be greeted by the recruiter who provides an overview of the
process. You will then have 6-8 interviews with members of the team with which you're interviewing, as well
as key people with whom your team works.

CrackingTheCodinglInterview.com | 6th Edition 11

Il | Behind the Scenes

You can expect a mtx of one-on-one and two-on-one interviews. Be ready to code on a whiteboard and
make sure all of your thoughts are clearly communicated. Lunch is with your potential future manager and
appears more casual, but it is still an interview. Each interviewer usually focuses on a different area and
is discouraged from sharing feedback with other interviewers unless there's something they want subse-
quent interviewers to drill into.

Towards the end of the day, your interviewers will compare notes. If everyone still feels you're a viable candi-
date, you will have an interview with the director and the VP of the organization to which you're applying.
White this decision is rather informal, it's a very good sign if you make it. This decision also happens behind
the scenes, and if you don't pass, you'll simply be escorted out of the building without ever having been
the wiser (until now).

If you made it to the director and VP interviews, all of your interviewers will gather in a conference room
to give an official thumbs up or thumbs down. The VP typically won't be present but can still veto the hire
if they weren't impressed. Your recruiter will usually follow up a few days later, but feel free to ping him or
her for updates.

Definitely Prepare:

If you know what team you're interviewing with, make sure you read up on that product. What do you like
about it? What would you improve? Offering specific recommendations can show your passion for the job.

What's Unique:

Apple does two-on-one interviews often, but don't get stressed out about them-it's the same as a one-on-
one interview!

Also, Apple employees are huge Apple fans. You should show this same passion in your interview.

e The Facebook Interview

Once selected for an interview, candidates will generally do one or two phone screens, Phone screens will
be technical and will involve coding, usually an online document editor.

After the phone interview(s), you might be asked to do a homework assignment that will include a mix of
coding and algorithms. Pay attention to your coding style here. If you've never worked in an environment
which had thorough code reviews, it may be a good idea to get someone who has to review your code.

During your on-site interview, you will interview primarily with other software engineers, but hiring
managers are also involved whenever they are available. Atl interviewers have gone through comprehen-
sive interview training, and who you interview with has no bearing on your odds of getting an offer.

Each interviewer is given a"role"during the on-site interviews, which helps ensure that there are no repeti-
tive questions and that they get a holistic picture of a candidate. These roles are:

*

Behavioral ("Jedi"): This interview assesses your ability to be successful in Facebook's environment.
Would you fit wetl with the culture and values? What are you excited about? How do you tackle chal-
ienges? Be prepared to talk about your interest in Facebook as well. Facebook wants passionate people.
You might also be asked some coding questions in this interview.

» Coding and Algorithms ("Ninja"): These are your standard coding and algorithms questions, much like
what you'll find in this book. These questions are designed to be challenging. You can use any program-
ming language you want.

14 Cracking the Coding interview, 6th Edition

Il'| Behind the Scenes

» Design/Architecture ("Pirate"): For a backend software engineer, you might be asked system design
questions. Front-end or other specialties will be asked design questions related to that discipline. You
should openly discuss different solutions and their tradeoffs.

You can typically expect two "ninja" interviews and one "jedi" interview. Experienced candidates will also
usually get a "pirate” interview.

After your interview, interviewers submit written feedback, prior to discussing your performance with each
other. This ensures that your performance in one interview will not bias another interviewer's feedback.

Once everyone's feedback is submitted, your interviewing team and a hiring manager get together to
collaborate on a final decision. They come to a consensus decision and submit a final hire recommendation
to the hiring committee.

Definitely Prepare:

The youngest of the "elite" tech companies, Facebook wants developers with an entrepreneurial spirit. In
your interviews, you should show that you love to build stuff fast.

They want to know you can hack together an elegant and scalable solution using any language of choice.
Knowing PHP is not especially important, particularly given that Facebook also does a lot of backend work
in C++, Python, Erlang, and other languages.

What's Unique:

Facebook interviews developers for the company "in general," not for a specific team. If you are hired, you
will go through a six-week "bootcamp" which will help ramp you up in the massive code base. You'll get
mentorship from senior devs, learn best practices, and, ultimately, get a greater flexibility in choosing a
project than if you were assigned to a project in your interview.

¢ The Palantir Interview

Unlike some companies which do "pooled" interviews (where you interview with the company as a whole,
not with a specific team), Palantir interviews for a specific team. Occasionally, your application might be
re-routed to another team where there is a better fit.

The Palantir interview process typically starts with two phone interviews. These interviews are about 30 to
45 minutes and will be primarily technical. Expect to cover a bit about your prior experience, with a heavy
focus on algorithm questions.

You might also be sent a HackerRank coding assessment, which will evaluate your ability to write optimal
algorithms and correct code. Less experienced candidates, such as those in college, are particularly likely
to get such a test.

After this, successful candidates are invited to campus and will interview with up to five people. Onsite
interviews cover your prior experience, relevant domain knowledge, data structures and algorithms, and
design.

You may also likely get a demo of Palantir's products. Ask good questions and demonstrate your passion
for the company.

After the interview, the interviewers meet to discuss your feedback with the hiring manager.

CrackingTheCodinglInterview.com | 6th Edition 11

II'| Behind the Scenes

Definitely Prepare:

Palantir values hiring brilliant engineers. Many candidates report that Palantir's questions were harder than
those they saw at Google and other top companies. This doesn't necessarily mean it's harder to get an offer
{although it certainly can); it just means interviewers prefer more challenging questions. If you're inter-
viewing with Palantir, you should learn your core data structures and algorithms inside and out. Then, focus
on preparing with the hardest algorithm questions.

Brush up on system design too if you're interviewing for a backend role. This is an important part of the

process.

What's Unique:

A coding challenge is a common part of Palantir's process. Although you'll be at your computer and can
look up materia! as needed, don't walk into this unprepared. The questions can be extremely challenging
and the efficiency of your algorithm wilt be evaluated. Thorough interview preparation will help you here.
You can also practice coding challenges online at HackerRank.com.

14 Cracking the Coding interview, 6th Edition

Special Situations

There are many paths that lead someone to this book. Perhaps you have more experience but have never
done this sort of interview. Perhaps you're a tester or a PM. Or perhaps you're actually using this book to
teach yourseif how to interview better. Here's a fittle something for all these "special situations."

¢ Experienced Candidates

Some people assume that the algorithm-style questions you see in this book are only for recent grads.
That's not entirely true.

More experienced engineers might see slightly less focus on algorithm questions—but only slightly

Ifa company asks algorithm questions to inexperienced candidates, they tend to ask them to experienced
candidates too. Rightly or wrongly, they feel that the skills demonstrated in these questions are important
for all developers.

Some interviewers might hold experience candidates to a somewhat lower standard. After all, it's been
years since these candidates took an algorithms class. They're out of practice.

Others though hold experienced candidates to a higher standard, reasoning that the more years of experi-
ence allow a candidate to have seen many more types of problems.

On average, it balances out.

The exception to this rule is system design and architecture questions, as well as questions about your
resume. Typically, students don't study much system architecture, so experience with such challenges
would only come professionally. Your performance in such interview questions would be evaluated with
respect to your experience level. However, students and recent graduates are still asked these questions
and should be prepared to solve them as welt as they can.

Additionally, experienced candidates will be expected to give a more in-depth, impressive response to
questions like, "What was the hardest bug you've faced?" You have more experience, and your response to
these questions should show it.

¢ Testers and SDETs

SDETs (software design engineers in test) write code, but to test features instead of build features. As such,
they have to be great coders and great testers. Double the prep work!

If you're applying for an SDET role, take the following approach:

CrackingTheCodinglnterview.com | 6th Edition Is

Ill'l Special Situations

* Prepare the Core Testing Problems: For example, how would you test a light bulb? A pen? A cash register?
Microsoft Word? The Testing chapter will give you more background on these problems.

* Practice the Coding Questions: The number one thing that SDETs get rejected for is coding skills. Although
coding standards are typically lower for an SDET than for a traditional developer, SDETs are still expected
to be very strong in coding and algorithms. Make sure that you practice solving all the same coding and
algorithm questions that a regular developer would get.

* Practice Testing the Coding Questions: A very popular format for SDET questions is "Write code to do X"
followed up by, "Okay, now test it," Even when the question doesn't specifically require this, you should
ask yourself, "How would | test this?" Remember; any problem can be an SDET problem!

Strong communication skills can also be very important for testers, since yourjob requires you to work with
so many different people. Do not neglect the Behavioral Questions section.

Career Advice

Finally, a word of career advice; If, like many candidates, you are hoping to apply to an SDET position as the
"easy"way into a company, be aware that many candidates find it very difficult to move from an SDET posi-
tion to a dev position. Make sure to keep your coding and algorithms skills very sharp if you hope to make
this move, and try to switch within one to two years. Otherwise, you might find it very difficult to be taken
seriously in a dev interview.

Never let your coding skills atrophy.

* Product (and Program) Management

These "PM" roles vary wildly across companies and even within a company. At Microsoft, for instance, some
PMsmay be essentially customer evangelists, working in a customer-facing role that borders on marketing.
Across campus though, other PMs may spend much of their day coding. The latter type of PMs would likely
be tested on coding, since this is an important part of their job function.

Generally speaking, interviewers for PM positions are looking for candidates to demonstrate skills in the
following areas:

* Handling Ambiguity: This is typically not the most critical area for an interview, but you should be aware
that interviewers do look for skill here. Interviewers want to see that, when faced with an ambiguous
situation, you don't get overwhelmed and stall. They want to see you tackle the problem head on:
seeking new information, prioritizing the most important parts, and solving the problem in a structured
way. This typically will not be tested directly (though it can be), but it may be one of many things the
interviewer is looking for in a problem.

» Customer Focus (Attitude): Interviewers want to see that your attitude is customer-focused. Do you
assume that everyone will use the product just like you do? Or are you the type of person who puts
himself in the customer's shoes and tries to understand how they want to use the product? Questions
like "Design an alarm clock for the blind" are ripe for examining this aspect. When you hear a question
like this, be sure to ask a lot of questions to understand who the customer is and how they are using the
product. The skills covered in the Testing section are closely related to this.

» Customer Focus (Technical Skills). Some teams with more complex products need to ensure that their PMs
walk in with a strong understanding of the product, as it would be difficult to acquire this knowledge on
the job. Deep technical knowledge of mobile phones is probably not necessary to work on the Android
or Windows Phone teams (although it might still be nice to have), whereas an understanding of security
might be necessary to work on Windows Security. Hopefully, you wouldn't interview with a team that

16 24 Crackingthe Coding Interview, 6th Edition

Il | Special Situations

required specific technical skills unless you at least claim to possess the requisite skills.

Multi-Level Communication: PMs need to be able to communicate with people at all levels in the
company, across many positions and ranges of technical skills. Your interviewer will want to see that you
possess this flexibility in your communication. This is often examined directly, through a question such
as, "Explain TCP/IP to your grandmother." Your communication skills may also be assessed by how you
discuss your prior projects.

Passion for Technology: Happy employees are productive employees, so a company wants to make sure
that you'il enjoy the job and be excited about your work. A passion for technology—and, ideally, the
company or team—should come across in your answers. You may be asked a question directly like,"Why
are you interested in Microsoft?" Additionally, your interviewers will look for enthusiasm in how you
discuss your prior experience and how you discuss the team's challenges.They want to see that you will
be eager to face the job's challenges.

Teamwork f Leadership: This may be the most important aspect of the interview, and—not surpris-
ingly—the job itself. AM interviewers will be looking for your ability to work well with other people. Most
commonly, this is assessed with questions like, "Tel! me about a time when a teammate wasn't pulling
his / her own weight."Your interviewer is looking to see that you handle conflicts well, that you take
initiative, that you understand people, and that people like working with you. Your work preparing for
behavioral questions will be extremely important here.

All of the above areas are important skills for PMs to master and are therefore key focus areas of the inter-

view. The weighting of each of these areas will roughly match the importance that the area holds in the
actual job.

* Dev Lead and Managers

Strong coding skills are almost always required for dev lead positions and often for management positions

as well. If you'll be coding on the job, make sure to be very strong with coding and algorithms—ijust like a

dev would be. Google, in particular, holds managers to high standards when it comes to coding.

In addition, prepare to be examined for skills in the following areas:

Teamwork/Leadership: Anyone in a management-like role needs to be able to both lead and work with
people. You will be examined implicitly and explicitly in these areas. Explicit evaluation will come in the
form of asking you how you handled prior situations, such as when you disagreed with a manager. The
implicit evaluation comes in the form of your interviewers watching how you interact with them. If you
come off as too arrogant or too passive, your interviewer may feel you aren't great as a manager.

Prioritization: Managers are often faced with tricky issues, such as how to make sure a team meets a
tough deadline. Your interviewers will want to see that you can prioritize a project appropriately, cutting
the less important aspects. Prioritization means asking the right questions to understand what is critical
and what you can reasonably expect to accomplish.

Communication: Managers need to communicate with people both above and befow them, and poten-
tially with customers and other much less technical people. Interviewers will look to see that you can
communicate at many levels and that you can do so in a way that is friendly and engaging. This is, in
some ways, an evaluation of your personality.

"Getting rh/ngs Done": Perhaps the most importantthing thata manager can do is be a person who "gets
things done."This means striking the right balance between preparing for a project and actually imple-
menting it. You need to understand how to structure a project and how to motivate people so you can
accomplish the team's goals.

CrackingTheCodinglInterview.com | 6th Edition 19

Il | Special Situations

Ultimately, most of these areas come back to your prior experience and your personality. Be sure to prepare
very, very thoroughly using the interview preparation grid.

> Startups

The application and interview process for startups is highly variable. We can't go through every startup,
but we can offer some general pointers. Understand, however, that the process at a specific startup might
deviate from this.

The Application Process

Many startups might postjob listings, but for the hottest startups, often the best way in isthrough a personal
referral. This reference doesn't necessarily need to be a close friend or a coworker. Often just by reaching
out and expressing your interest, you can get someone to pick up your resume to see if you're a good fit.

Visas and Work Authorization

Unfortunately, many smaller startups in the U.S. are not able to sponsor work visas. They hate the system
as much you do, but you won't be able to convince them to hire you anyway. If you require a visa and wish
to work at a startup, your best bet is to reach out to a professional recruiter who works with many startups
{and may have a better idea of which startups will work with visa issues), or to focus your search on bigger
startups.

Resume Selection Factors

Startups tend to want engineers who are not only smart and who can code, but also people who would
work well in an entrepreneurial environment. Your resume should ideally show initiative. What sort of proj-
ects have you started?

Being able to "hit the ground running" is also very important; they want people who already know the
language of the company.

The Interview Process

In contrast to big companies, which tend to iook mostly at your general aptitude with respect to software
development, startups often look closely at your personality fit, skill set, and prior experience.

» Personality Fit: Personality fit is typically assessed by how you interact with your interviewer. Establishing
a friendly, engaging conversation with your interviewers is your ticket to many job offers.

» Skill Set: Because startups need people who can hit the ground running, they are likely to assess your
skills with specific programming languages. If you know a language that the startup works with, make
sure to brush up on the details.

» Experience: Startups are likely to ask you a lot of questions about your experience. Pay special attention
to the Behavioral Questions section.

In addition to the above areas, the coding and algorithms questions that you see in this book are also very
common.

18 24 Crackingthe Coding Interview, 6th Edition

Il | Special Situations

¢ Acquisitions and Acquihires

During the technical due diligence process for many acquisitions, the acquirer will often interview most or
all of a startup's employees. Google, Yahoo, Facebook, and many other companies have this as a standard
part of many acquisitions.

Which startups go through this? And why?

Part of the reasoning for this is that their employees had to go through this process to get hired. They don't
want acquisitions to be an "easy way" into the company. And, since the team is a core motivator for the
acquisition, they figure it makes sense to assess the skills of the team.

Not all acquisitions are like this, of course. The famous multi-billion dollar acquisitions generally did not
have to go through this process. Those acquisitions, after all, are usually about the user base and commu-
nity, less so about the employees or even the technology. Assessing the team's skills is less essential.

However, it is not as simple as"acquihires get interviewed, traditional acquisitions do not/There is a big gray
area between acquihires (i.e., talent acquisitions) and product acquisitions. Many startups are acquired for
the team and ideas behind the technology. The acquirer might discontinue the product, but have the team
work on something very similar.

If your startup is going through this process, you can typically expect your team to have interviews very
similar to what a normal candidate would experience (and, therefore, very similar to what you'll see in this
book).

How important are these interviews?

These interviews can carry enormous importance. They have three different roles:

+ They can make or break acquisitions. They are often the reason a company does not get acquired,

» They determine which employees receive offers to join the acquirer.

» They can affect the acquisition price (in part as a consequence of the number of employees who join).

These interviews are much more than a mere "screen."

Which employees go through the interviews?

For tech startups, usually all of the engineers go through the interview process, as they are one of the core
motivators for the acquisition.

In addition, sales, customer support, product managers, and essentially any other role might have to go
through it.

The CEO is often slotted into a product manager interview or a dev manager interview, as this is often the
closest match for the CEO's current responsibilities. This is not an absolute rule, though. It depends on what
the CEO's role presently is and what the CEO is interested in. With some of my clients, the CEO has even
opted to not interview and to leave the company upon the acquisition.

What happens to employees who don't perform well in the interview?

Employees who underperform will often not receive offers to join the acquirer, (if many employees don't
perform well, then the acquisition will likely not go through.)

CrackingTheCodinglInterview.com | 6th Edition 19

Il | Special Situations

In some cases, employees who performed poorly in interviews will get contract positions for the purpose of
"knowledge transfer."These are temporary positions with the expectation that the employee leaves at the
termination of the contract (often six months), although sometimes the employee ends up being retained.

In other cases, the poor performance was a result of the employee being mis-slotted. This occurs in two
common situations:

+ Sometimes a startup labels someone who is not a "traditional"software engineer as a software engineer.
This often happens with data scientists or database engineers. These people may underperform during
the software engineer interviews, as their actual role involves other skills.

* In other cases, a CEO "sells" a junior software engineer as more senior than he actually is. He underper-
forms for the senior bar because he's being held to an unfairly high standard.

(neither case, sometimes the employee will be re-interviewed for a more appropriate position. {Other times
though, the employee is just out of luck.)

tn rare cases, a CEO is able to override the decision for a particularly strong employee whose interview
performance didn't reflect this.

Your "best" (and worst) employees might surprise you.

The problem-solving/algorithm interviews conducted at the top tech companies evaluate particular skills,
which might not perfectly match what their manager evaluates in their employees.

I've worked with many companies that are surprised at who their strongest and weakest performers are in
interviews. That junior engineer who still has a lot to learn about professional development might turn out
to be a great problem-solver in these interviews.

Don't count anyone out—or in—until you've evaluated them the same way their interviewers will.

Are employees held to the same standards as typical candidates?
Essentially yes, although there is a bit more leeway.

The big companies tend to take a risk-averse approach to hiring. If someone is on the fence, they often lean
towards a no-hire.

In the case of an acquisition, the "on the fence" employees can be pulled through by strong performance
from the rest of the team.

How do employees tend to react to the news of an acquisition/acquihire?

This is a big concern for many startup CEOs and founders. Will the employees be upset about this process?
Or, what if we get their hopes up but it doesn't happen?

What I've seen with my clients is that the leadership is worried about this more than is necessary.

Certainly, some employees are upset about the process. They might not be excited aboutjoining one ofthe
big companies for any number of reasons.

Most employees, though, are cautiously optimistic about the process. They hope it goes through, but they
know that the existence of these interviews means that it might not.

24 Cracking the Coding Interview, 6th Edition

Ill I Special Situations

What happens to the team after an acquisition?

Every situation is different. However, most of my clients have been kept together as a team, or possibly
integrated into an existing team.

How should you prepare your team for acquisition interviews?

interview prep for acquisition interviews is fairly similar to typical interviews at the acquirer. The difference
is that your company is doing this as a team and that each employee wasn't individually selected for the
interview on their own merits.

You're all In this together.

Some startups I've worked with put their "real" work on hold and have their teams spend the next two or
three weeks on interview prep.

Obviously, that's not a choice all companies can make, but—from the perspective of wanting the acquisi-
tion to go through—that does increase your results substantially.

Your team should study individually, in teams oftwo or three, or by doing mock interviews with each other.
If possible, use all three of these approaches.

Some people may be less prepared than others.

Many developers at startups might have only vaguely heard of big 0 time, binary search tree, breadth-first
search, and other important concepts. They'll need some extra time to prepare.

People without computer science degrees (or who earned their degrees a long time ago) should focus
first on learning the core concepts discussed in this book, especially big 0 time (which is one of the most
important). A good first exercise is to implement all the core data structures and algorithms from scratch.

If the acquisition is important to your company, give these people the time they need to prepare. They'll
need it.

Don't wait until the last minute.

As a startup, you might be used to taking things as they come without a ton of planning. Startups that do
this with acquisition interviews tend not to fare well.

Acquisition interviews often come up very suddenly. A company's CEO is chatting with an acquirer (or
several acquirers) and conversations get increasingly serious. The acquirer mentions the possibility of inter-
views at some point in the future. Then, all of a sudden, there's a "come in at the end of this week" message.

If you wait until there's a firm date set for the interviews, you probably won't get much more than a couple
of days to prepare. That might not be enough time for your engineers to learn core computer science
concepts and practice interview questions.

¢ For Interviewers

Since writing the last edition, I've learned that a lot of interviewers are using Cracking the Coding Interview
to learn how to interview. That wasn't really the book's Intention, but | might as well offer some guidance
for interviews.

CrackingTheCodinginterview.com | 6th Edition 19

Ill I Special Situations

Don't actually ask the exact questions in here.

First, these questions were selected because they're good for interview preparation. Some questions that
are good for interview preparation are not always good for interviewing. For example, there are some
brainteasers in this book because sometimes interviewers ask these sorts of questions. It's worthwhile for
candidates to practice those if they're interviewing at a company that likes them, even though | personally
find them to be bad questions.

Second, your candidates are reading this book, too. You don't want to ask questions that your candidates
have already solved.

You can ask questions similar to these, but don't just pluck questions out of here. Your goal is to test their
problem-solving skills, not their memorization skills.

Ask Medium and Hard Problems

The goal of these questions is to evaluate someone's problem-solving skills. When you ask questions that
are too easy, performance gets clustered together. Minor issues can substantially drop someone's perfor-
mance. It's not a reliable indicator.

Look for questions with multiple hurdles.

Some questions have "Aha!" moments. They rest on a particular insight. If the candidate doesn't get that one
bit, then they do poorly. If they get it, then suddenly they've outperformed many candidates.

Even if that insight is an indicator of skills, it's still only one indicator. Ideally, you want a question that has a
series of hurdles, insights, or optimizations. Multiple data points beat a single data point.

Here's a test: if you can give a hint or piece of guidance that makes a substantial difference in a candidate's
performance, then it's probably not a good interview question.

Use hard questions, not hard knowledge.

Some interviewers, in an attempt to make a question hard, inadvertently make the knowledge hard. Sure
enough, fewer candidates do well so the statistics look right, but it's not for reasons that indicate much
about the candidates' skills.

The knowledge you are expecting candidates to have should be fairly straightforward data structure and
algorithm knowledge. It's reasonable to expect a computer science graduate to understand the basics of
big O and trees. Most won't remember Dijkstra's algorithm or the specifics of how AVL trees works.

If your interview question expects obscure knowledge, ask yourself: is this truly an important skill? Is it so
important that | would like to either reduce the number of candidates | hire or reduce the amount to which
| focus on problem-solving or other skills?

Every new skill or attribute you evaluate shrinks the number of offers extended, unless you counter-balance
this by relaxing the requirements for a different skill. Sure, all else being equal, you might prefer someone
who could recite the finer points of a two-inch thick algorithms textbook. But all else isn't equal.

Avoid "scary" questions.

Some questions intimidate candidates because it seems like they involve some specialized knowledge,
even if they really don't. This often includes questions that involve:

* Math or probability.

24 Cracking the Coding Interview, 6th Edition

Il | Special Situations

* Low-level knowledge (memory allocation, etc.).

+ System design or scalability.

» Proprietary systems (Google Maps, etc.).

For example, one question | sometimes ask is to find all positive integer solutions under 1,000 to a + b
= ¢® + d' (page 68).

Many candidates will at first think they have to do some sort of fancy factorization of this or semi-advanced

math. They don't. They need to understand the concept of exponents, sums, and equality, and that's it.

When | ask this question, | explicitly say, "I know this sounds like a math problem. Don't worry. It's not. It's an
algorithm question." If they start going down the path of factorization, | stop them and remind them that
It's not a math question.

Otherquestionsmightinvolveabitofprobability.lt might be stuff that a candidate would surely know (e.g.,
to pick between five options, pick a random number between 1 and 5), But simply the fact that it involves
probability will intimidate candidates.

Be careful asking questions that sound intimidating. Remember that this is already a really intimidating
situation for candidates. Adding on a "scary" question might just fluster a candidate and cause him to
underperform.

If you're going to ask a question that sounds "scary," make sure you really reassure candidates that it doesn't
require the knowledge that they think it does.

Offer positive reinforcement.

Some interviewers put so much focus on the "right" question that they forget to think about their own
behavior.

Many candidates are intimidated by interviewing and try to read into the interviewer's every word. They
can cling to each thing that might possibly sound positive or negative. They interpret that little comment of
"good luck" to mean something, even though you say it to everyone regardless of performance.

You want candidates to feel good about the experience, about you, and about their performance. You want
them to feel comfortable. A candidate who is nervous will perform poorly, and it doesn't mean that they
aren't good. Moreover, a good candidate who has a negative reaction to you or to the company is less likely
to accept an offer—and they might dissuade their friends from interviewing/accepting as well.

Try to be warm and friendly to candidates. This is easier for some people than others, but do your best.

Even if being warm and friendly doesn't come naturally to you, you can still make a concerted effort to
sprinkle in positive remarks throughout the interview:

+ "Right, exactly."

+ "Great point."

+ "Good work."

+ "Okay, that's a really interesting approach,”
+ "Perfect."

No matter how poorly a candidate is doing, there is always something they got right. Find a way to infuse
some positivity into the interview.

CrackingTheCodinglInterview.com|6th Edition 19

Il | Special Situations

Probe deeper on behavioral questions.
Many candidates are poor at articulating their specific accomplishments.

You ask them a question about a challenging situation, and they tetl you about a difficult situation their
team faced. As far as you can tell, the candidate didn't really do much.

Not so fast, though. A candidate might not focus on themselves because they've been trained to celebrate
their team's accomplishments and not boast about themselves. This is especially common for people in
leadership rotes and female candidates.

Don't assume that a candidate didn't do much in a situation just because you have trouble understanding
what they did. Call out the situation (nicely!). Ask them specifically if they can tell you what their role was.

If it didn't really sound like resolving the situation was difficult, then, again, probe deeper. Ask them to go
into more details about how they thought about the issue and the different steps they took. Ask them why
they took certain actions. Not describing the details of the actions they took makes them a flawed candi-
date, but not necessarily a flawed employee.

Being a good interview candidate is its own skill (after all, that's part of why this book exists), and it's prob-
ably not one you want to evaluate.

Coach your candidates.

Read through the sections on how candidates can develop good algorithms. Many of these tips are ones
you can offer to candidates who are struggling. You're not "teaching to the test" when you do this; you're
separating interview skills from job skills.

* Many candidates don't use an example to solve an interview question {or they don't use a good
example). This makes it substantially more difficult to develop a solution, but it doesn't necessarily mean
that they're not very good problem solvers. If candidates don't write an example themselves, or if they
inadvertently write a special case, guide them.

+ Some candidates take a long time to find the bug because they use an enormous example. This doesn't
make them a bad tester or developer, Itjust means that they didn't realize that it would be more efficient
to analyze their code conceptually first, or that a small example would work nearly as well. Guide them.

« Ifthey dive into code before they have an optimal solution, pull them back and focus them on the algo-
rithm (if that's what you want to see). It's unfair to say that a candidate never found or implemented the
optimal solution if they didn't really have the time to do so.

» If they get nervous and stuck and aren't sure where to go, suggest to them that they walk through the
brute force solution and look for areas to optimize.

+ Ifthey haven't said anything and there is a fairly obvious brute force, remind them that they can start off
with a brute force. Their first solution doesn't have to be perfect.

Even if you think that a candidate's ability in one ofthese areas is an important factor, it's not the only factor.
You can always mark someone down for "failing" this hurdle while helping to guide them past it.

While this book is here to coach candidates through interviews, one of your goals as an interviewer is to
remove the effect of not preparing. After all, some candidates have studied for interviews and some candi-
dates haven't, and this probably doesn't reveal much about their skills as an engineer.

Guide candidates using the tips in this book (within reason, of course—you don't want to coach candidates
through the problems so much that you're not evaluating their problem-solving skills anymore).

24 Cracking the Coding Interview, 6th Edition

I1l'| Speciai Situations

Be careful here, though. Ifyou're someone who comes offas intimidating to candidates, this coaching could
make things worse, it can come offas your telling candidates that they're constantly messing up by creating
bad examples, not prioritizing testing the right way, and so on.

If they want silence, give them silence.

One of the most common questions that candidates ask me is how to deal with an interviewer who insists
on talking when they just need a moment to think in silence.

If your candidate needs this, give your candidate this time to think. Learn to distinguish between "I'm stuck
and have no idea what to do,"andTm thinking in silence,"

It might help you to guide your candidate, and it might help many candidates, but it doesn't necessarily
help all candidates. Some need a moment to think. Give them that time, and take into account when you're
evaluating them that they got a bit less guidance than others.

Know your mode: sanity check, quality, specialist, and proxy.
At a very, very high level, there are four modes of questions;

¢ Sanity Check: These are often easy problem-solving or design questions. They assess a minimum
degree of competence in problem-solving. They won't tell distinguish between "okay" versus "great" so
don't evaluate them as such. You can use them earfy in the process (to filter out the worst candidates), or
when you only need a minimum degree of competency.

* Quality Check: These are the more challenging questions, often in problem-solving or design. They
are designed to be rigorous and really make a candidate think. Use these when algorithmic/problem-
solving skiils are of high importance. The biggest mistake people make here is asking questions that are,
in fact, bad problem-solving questions.

* Specialist Questions: These questions test knowledge of specific topics, such as Java or machine
iearning. They should be used when for skills a good engineer couldn't quickly learn on the job. These
questions need to be appropriate for true specialists. Unfortunately, I've seen situations where a
company asks a candidate who just completed a 10-week coding bootcamp detailed questions about
Java. What does this show? if she has this knowledge, then she only learned it recently and, therefore, it's
likely to be easily acquirable. If it's easily acquirable, then there's no reason to hire for it.

* Proxy Knowledge: This is knowledge that is not quite at the specialist level (in fact, you might not even
need it), but that you would expect a candidate at their level to know. For example, it might not be very
important to you if a candidate knows CSS or HTML. But if a candidate has worked in depth with these
technologies and can't talk about why tables are or aren't good, that suggests an issue. They're not
absorbing information core to their job.

When companies get into trouble is when they mix and match these:
* They ask specialist questions to people who aren't specialists.
» They hire for specialist roles when they don't need specialists.
+ They need specialists but are only assessing pretty basic skills,

» They are asking sanity check (easy) questions, but think they're asking quality check questions. They
therefore interpret a strong difference between "okay" and "great" performance, even though a very
minor detail might have separated these.

In fact, having worked with a number of small and iarge tech companies on their hiring process, | have
found that most companies are doing one of these things wrong.

CrackirigTheCodirigInterview.com |6th Edition iJ

IV

Before the Interview

Acing an interview starts well before the interview itself—years before, in fact. The following timeline
outlines what you should be thinking about when.

If you're starting fate into this process, don't worry. Do as much "catching up" as you can, and then focus on
preparation. Good luck!

* Getting the Right Experience

Without a great resume, there's no interview. And without great experience, there's no great resume. There-
fore, the first step in landing an interview is getting great experience. The further in advance you can think
about this the better.

For current students, this may mean the following:

» Take the Big Project Classes: Seek out the classes with big coding projects. This is a great way to get some-
what practical experience before you have any formal work experience. The more relevant the project is
to the real world, the better.

» Getan Internship: Do everything you can to land an internship early in school. It will pave the way for
even better internships before you graduate. Many of the top tech companies have internship programs
designed especially for freshman and sophomores. You can also look at startups, which might be more
flexible.

» Starf Something: Build a project on your own time, participate in hackathons, or contribute to an open
source project. It doesn't matter too much what it is. The important thing is that you're coding. Not only
will this develop your technical skills and practical experience, your initiative will impress companies.

Professionals, on the other hand, may already have the right experience to switch to their dream company.
For instance, a Google dev probably already has sufficient experience to switch to Facebook. However, if
you're trying to move from a lesser-known company to one of the "biggies," or from testing/IT into a dev
role, the following advice will be useful:

» Shift Work Responsibilities More Towards Coding: Without revealing to your manager that you are thinking
of leaving, you can discuss your eagerness to take on bigger coding challenges. As much as possible,
try to ensure that these projects are "meaty," use relevant technologies, and lend themselves well to a
resume bullet or two. It is these coding projects that will, ideally, form the bulk of your resume,

» Use Your Nights and Weekends: If you have some free time, use it to build a mobile app, a web app, or a
piece of desktop software. Doing such projects is also a great way to get experience with new technolo-
gies, making you more relevant to today's companies. This project work should definitely be listed on
your resume; few things are as impressive to an Interviewer as a candidate who built something "just

26 Cracking the Coding Interview, 6th Edition

IV | Before the Interview

for fun."

All ofthese boil down to the two big things that companies want to see: that you're smart and that you can
code, if you can prove that, you can land your interview.

In addition, you should think in advance about where you want your career to go. if you want to move into
management down the road, even though you're currently looking for a dev position, you should find ways
now of developing leadership experience.

e Writing a Great Resume

Resume screeners look for the same things that interviewers do. They want to know that you're smart and
that you can code.

That means you should prepare your resume to highlight those two things. Your love of tennis, traveling, or
magic cards won't do much to show that. Think twice before cutting more technical lines in order to allow
space for your non-technical hobbies.

Appropriate Resume Length

In the US, it is strongly advised to keep a resume to one page if you have less than ten years of experience.
More experienced candidates can often justify 1.5 - 2 pages otherwise.

Think twice about a long resume. Shorter resumes are often more impressive.

* Recruiters only spend a fixed amount of time (about 10 seconds) looking at your resume. If you limit
the content to the most impressive items, the recruiter is sure to see them. Adding additional items just
distracts the recruiter from what you'd really like them to see,

+ Some people just flat-out refuse to read long resumes. Do you really want to risk having your resume
tossed for this reason?

If you are thinking right now that you have too much experience and can't fit it all on one or two pages,
trust me, you con. Long resumes are not a reflection of having tons of experience; they're a reflection of not
understanding how to prioritize content.

Employment History

Your resume does not—and should not—include a full history of every role you've ever had. Include only
the relevant positions—the ones that make you a more impressive candidate.

Writing Strong Bullets

For each role, try to discuss your accomplishments with the following approach:"Accomplished X by imple-
menting Y which led to Z" Here's an example:

» "Reduced object rendering time by 75% by implementing distributed caching, leading to a 10% reduc-
tion in log-in time."

Here's another example with an alternate wording:

» "Increased average match accuracy from 1.2 to 1.5 by implementing a new comparison algorithm based
on windiff."

Not everything you did will fit intothis approach, butthe principle is the same: show what you did, how you
did it, and what the results were. Ideally, you should try to make the results "measurable" somehow.

CraekingTheCodinglnterview.com [6th Edition 27

IV | Before the Interview

Projects

Developing the projects section on your resume is often the best way to present yourself as more experi-
enced. This is especially true for college students or recent grads.

The projects should include your 2 - 4 most significant projects. State what the project was and which
languages or technologies it employed. You may also want to consider including details such as whether
the project was an individual or a team project, and whether it was completed for a course or indepen-
dently, These details are not required, so only include them if they make you look better. Independent
projects are generally preferred over course projects, as it shows initiative.

Do not add too many projects. Many candidates make the mistake of adding all 13 of their prior projects,
cluttering their resume with small, non-impressive projects.

So what should you build? Honestly, it doesn't matter that much. Some employers really like open source
projects (it offers experience contributing to a large code base), while others prefer independent projects
(it's easier to understand your personal contributions). You could build a mobile app, a web app, or almost
anything.The most important thing is that you're building something.

Programming Languages and Software

Software

Be conservative about what software you list, and understand what's appropriate for the company. Soft-
ware like Microsoft Office can almost always be cut. Technical software like Visual Studio and Eclipse is
somewhat more relevant, but many of the top tech companies won't even care about that. After all, is it
really that hard to learn Visual Studio?

Of course, it won't hurt you to list all this software. Itjust takes up valuable space. You need to evaluate the
trade-off of that.

Languages

Should you list everything you've ever worked with, or shorten the list to just the ones that you're most
comfortable with?

Listing everything you've ever worked with is dangerous. Many interviewers consider anything on your
resume to be "fair game"as far as the interview.

One alternative is to list most of the languages you've used, but add your experience level. This approach
is shown below:

» Languages: Java (expert), C++ (proficient), JavaScript (prior experience).
Use whatever wording ("expert" "fluent" etc.) effectively communicates your skillset.

Some people list the number of years of experience they have with a particular language, but this can be
really confusing. If you first learned Java 10 years ago, and have used it occasionally throughout that time,
how many years of experience is this?

For this reason, the number of years of experience is a poor metric for resumes. It's better to just describe
what you mean in plain English.

Advice for Non-Native English Speakers and Internationals

Some companies will throw out your resume just because of a typo. Please get at least one native English
speaker to proofread your resume.

30 Cracking the Coding Interview, 6th Edition

IV | Before the Interview

Additionally, for US positions, do nof include age, marital status, or nationality. This sort of personal informa-
tion is not appreciated by companies, as it creates a legal liability for them.

Beware of (Potential) Stigma

Certain languages have stigmas associated with them. Sometimes this is because of the language them-
selves, but often it's because of the places where this language is used. I'm not defending the stigma; I'm
just letting you know of it,

A few stigmas you should be aware of;

Enterprise Languages: Certain languages have a stigma associated with them, and those are often the
ones that are used for enterprise development. Visual Basic is a good example of this. If you show your-
self to be an expert with VB, it can cause people to assume that you're less skilled. Many of these same
people will admit that, yes, VB.NET is actually perfectly capable of building sophisticated applications.
But still, the kinds of applications that people tend to build with it are not very sophisticated. You wouid
be unlikely to see a big name Silicon Valley using VB.

In fact, the same argument (although less strong) applies to the whole .NET platform. If your primary
focus is .NET and you're not applying for .NET roles, you'll have to do more to show that you're strong
technically than if you were coming in with a different background.

Being Too Language Focused: When recruiters at some of the top tech companies see resumes that
list every flavor of Java on their resume, they make negative assumptions about the caliber of candi-
date. There is a belief in many circles that the best software engineers don't define themselves around
a particular language. Thus, when they see a candidate seems to flaunt which specific versions of a
language they know, recruiters will often bucket the candidate as "not our kind of person."

Note that this does not mean that you should necessarily take this'language flaunting" off your resume.
You need to understand what that company values. Some companies do value this.

Certifications: Certifications for software engineers can be anything from a positive, to a neutral, to
a negative. This goes hand-in-hand with being too language focused; the companies that are biased
against candidates with a very lengthy list of technologies tend to also be biased against certifications.
This means that in some cases, you should actually remove this Sort of experience from your resume.

Knowing Only One or Two Languages: The more time you've spent coding, the more things you've
built, the more languages you will have tended to work with. The assumption then, when they see a
resume with only one language, is that you haven't experienced very many problems. They also often
worry that candidates with only one or two languages will have trouble learning new technologies (why
hasn't the candidate learned more things?) or wiil just feel too tied with a specific technology (poten-
tially not using the best language for the task).

This advice is here not just to help you work on your resume, but also to help you develop the right experi-
ence. Ifyour expertise isinCJf.NET, try developing some projects in Python and JavaScript. If you only know
one or two languages, build some applications in a different language.

Where possible, try to truly diversify. The languages in the cluster of {Python, Ruby, and JavaScript) are
somewhat similar to each other. It's better if you can learn languages that are more different, like Python,
C++, and Java.

CraekingTheCodinglnterview.com [6th Edition 27

IV | Before the Interview

> Preparation Map

The following map should give you an idea of how to tackle the interview preparation process. One of the
key takeaways here is that it's not just about interview questions. Do projects and write code, too!

e
1 +Years§
(before interview)

e I - —

Students: find intern-
ship and take classes
with large projects.

Professionals: focus
work on "meaty"

projects.

Read intro sections
of CtCl (Cracking the

Coding Interview).

Learn and master
BigO.

Do several mock inter-
views.

Continue to practice
interview questions.

Begin applying to
companies.

Build projects outside
of school/work.

Build website / port-
folio showcasing your
experience.

3-12 Months

Make target list of
preferred companies.

Implement data struc-
tures and algorithms
from scratch.

Do mini-projects to
solidify understanding
of key concepts.

Create list to track
mistakes you've made

solving problems.

Review/update
resume.

30 Cracking the Coding Interview, 6th Edition

Learn multiple
programming
languages.

Expand Network.

Continue to work on
projects. Try to add on

one more project.

Create draft of resume
and send it out for a
resume review.

Form mock interview
group with friends to
interview each other.

Create interview prep
grid (pg 32).

Re-read intro to CtCi,
especially Tech &
Behavioral section.

Do a final mock
interview.

t

Rehearse stories
from the interview
prep grid (pg 32).

Rehearse each story
from interview prep
grid once.

Continue to practice
questions & review
your list of mistakes.

Remember to talk out
loud. Show how you
think.

Don't forget: Stum-
bling and struggling is
normal!

Get an offer? Celebrate!
Your hard work paid
off!

Do another mock
interview.

Phone Interview:
Locate headset and/or
video camera.

Re-read Algorithm
Approaches (pg 67).

Day Before

Review Powers of 2
table (pg61). Print
for a phone screen.

Be Confident (Not
Cocky!).

f After)

If no offer, ask when
you can re-apply. Don't
give up hope!

IV| Before the Interview

Continue to practice
questions, writing
code on paper.

1 Week

Re-read Big O section
(pg 38).

Continue to practice
interview questions.

Day Of

Wake up in plenty of
time to eat a good
breakfast & be on time.

Write Thank You note
to recruiter.

If you haven't heard
from recruiter, check in
after one week.

CraekingTheCodinglnterview.com[6th Edition 27

Behavioral Questions

Behavioral questions are asked to get to know your personality, to understand your resume more deeply,
and just to ease you into an interview. They are important questions and can be prepared for.
¢ Interview Preparation Grid

Go through each ofthe projects or components of your resume and ensure that you can talk about them in
detail. Filling out a grid like this may help:

Common Questions Project 1 Project 2 Project 3

Challenges

Mistakes/Failures

Enjoyed

Leadership

Conflicts
What You'd Do Differently

Along the top, as columns, you should list all the major aspects of your resume, including each project, job,
or activity. Along the side, as rows, you should list the common behavioral questions.

Study this grid before your interview. Reducing each story to just a couple of keywords may make the grid
easier to study and recall. You can also more easily have this grid in front of you during an interview without
it being a distraction.

In addition, ensure that you have one to three projects that you can talk about in detail. You should be able
to discuss the technical components in depth. These should be projects where you played a central role.

What are your weaknesses?

When asked about your weaknesses, give a real weakness! Answers like "My greatest weakness is that |
work too hard" tell your interviewer that you're arrogant and/or won't admit to your faults. A good answer
conveys a real, legitimate weakness but emphasizes how you work to overcome it.

For example:
I "Sometimes, | don't have a very good attention to detail. While that's good because it lets me
execute quickly, it also means that | sometimes make careless mistakes. Because of that, | make

sure to always have someone else double check my work."

26 Cracking the Coding Interview, 6th Edition

V [Behavioral Questions

What questions should you ask the interviewer?

Most interviewers will give you a chance to ask them questions. The quality of your questions will be a
factor, whether subconsciously or consciously, in their decisions. Walk into the interview with some ques-
tions in mind.

You can think about three general types of questions.

Genuine Questions

These are the questions you actually want to know the answers to. Here are a few ideas of questions that
are valuable to many candidates:

1. "What is the ratio of testers to developers to program managers? What is the interaction like? How does
project planning happen on the team?"

2. "What brought you to this company? What has been most challenging for you?"

These questions will give you a good feel for what the day-to-day life is like at the company.
Insightful Questions
These questions demonstrate your knowledge or understanding of technology.

1. "I noticed that you use technology X. How do you handle problem Y?"

2, "Why did the product choose to use the X protocol over the Y protocol? | know it has benefits like A, 8,
C, but many companies choose not to use it because of issue D."

Asking such questions will typically require advance research about the company.

Passion Questions

These questions are designed to demonstrate your passion for technology. They show that you're inter-
ested tn learning and will be a strong contributor to the company.

1. "I'm very interested in scalability, and I'd love to learn more about it. What opportunities are there at this
company to learn about this?"

2. "I'm not familiar with technology X, but it sounds like a very interesting solution. Could you tell me a bit
more about how it works?"

> KnowYourTechnical Projects

As part of your preparation, you should focus on two or three technical projects that you should deeply
master. Select projects that ideally fit the following criteria:

» The project had challenging components (beyond just "learning a lot").
* You played a central role (ideally on the challenging components).
* You can talk at technical depth.

For those projects, and all your projects, be able to talk about the challenges, mistakes, technical decisions,
choices of technologies (and tradeoffs ofthese), and the things you would do differently.

You can also think about follow-up questions, like how you would scale the application.

CrackingTheCodinglInterview.com \ 6th Edition 37

V | Behavioral Questions

* Responding to Behavioral Questions

Behavioral questions allow your interviewer to get to know you and your prior experience better. Remember
the following advice when responding to questions.

Be Specific, Not Arrogant

Arrogance is a red flag, but you still want to make yourself sound impressive. So how do you make yourself
sound good without being arrogant? By being specific!

Specificity means giving just the facts and letting the interviewer derive an interpretation. For example,
rather than saying that you "did all the hard parts,"you can instead describe the specific bits you did that
were challenging.

Limit Details

When a candidate blabbers on about a problem, it's hard for an interviewer who isn't well versed in the
subject or project to understand it.

Stay tight on details and just state the key points. When possible, try to translate it or at least explain the
impact. You can always offer the interviewer the opportunity to drill in further.

I "By examining the most common user behavior and applying the Rabin-Karp algorithm, |
designed a new algorithm to reduce search from 0{n) to 0(log n) in 90% of cases. | can go
into more details if you'd like."

This demonstrates the key points while letting your interviewer ask for more details if he wants to.

Focus on Yourself, Not Your Team

Interviews are fundamentally an individual assessment. Unfortunately, when you listen to many candidates

(especially those in leadership roles), their answers are about "we", "us", and "the team." The interviewer

walks away having little idea what the candidate's actual impact was and might conclude that the candi-
date did little.

Pay attention to your answers. Listen for how much you say "we" versus "l." Assume that every question is
about your role, and speak to that.

Give Structured Answers

There are two common ways to think about structuring responses to a behavioral question: nugget first
and SAR, These techniques can be used separately or together.

Nugget First

Nugget First means starting your response with a "nugget" that succinctly describes what your response
will be about.

For example:
* Interviewer: "Tell me about a time you had to persuade a group of people to make a big change."

» Candidate:"Sure, let me tell you about the time when | convinced my school to let undergraduates teach
their own courses. Initially, my school had a rule where..."

36
Cracking the Coding Interview, 6th Edition

V [Behavioral Questions

This technique grabs your interviewer's attention and makes it very ciear what your story will be about It
also helps you be more focused in your communication, since you've made it very clear to yourself what
the gist of your response is.

S.A.R. (Situation, Action, Result)

The SAR, approach means that you start off outlining the situation, then explaining the actions you took,
and lastly, describing the result.

Example:"Tell me about a challenging interaction with a teammate."”

* Situation: On my operating systems project, | was assigned to work with three other people. While two
were great, the third team member didn't contribute much. He stayed quiet during meetings, rarely
chipped in during email discussions, and struggled to complete his components. This was an issue not
only because it shifted more work onto us, but also because we didn't know if we could count on him.

e Action: | didn't want to write him off completely yet, so | tried to resoive the situation. | did three things.

First, | wanted to understand why he was acting like this. Was it laziness? Was he busy with something
else? | struck up a conversation with him and then asked him open-ended questions about how he felt it
was going. Interestingly, basically out of nowhere, he said that he wanted to take on the writeup, which
is one of the most time intensive parts. This showed me that it wasn't laziness; it was that he didn't feel
like he was good enough to write code.

Second, now that | understand the cause, | tried to make it clear that he shouldn't fear messing up, | told
him about some of the bigger mistakes that | made and admitted that | wasn't ciear about a lot of parts
of the project either.

Third and finally, 1 asked him to help me with breaking out some of the components of the project. We
sat down together and designed a thorough spec for one of the big component, in much more detail
than we had before. Once he could see all the pieces, it helped show him that the project wasn't as scary
as he'd assumed.

¢ Result: With his confidence raised, he now offered to take on a bunch of the smaller coding work, and
then eventually some of the biggest parts. He finished all his work on time, and he contributed more in
discussions. We were happy to work with him on a future project.

The situation and the result should be succinct. Your interviewer generally does not need many details to
understand what happened and, in fact, may be confused by them.

By using the SAR, model with clear situations, actions and results, the interviewer will be able to easily
identify how you made an impact and why it mattered.

Consider putting your stories into the following grid:

Nugget Situation | Action(s) Result What It Says
Story 1 1. .
2. .
3 .
Story 2

Explore the Action

In almost all cases, the "action" is the most important part of the story. Unfortunately, far too many people
talk on and on about the situation, but then just breeze through the action.

CrackingTheCodinglnterview.com\6th Edition 37

V | Behavioral Questions

Instead, dive into the action. Where possible, breakdown the action into multiple parts. For example:"! did
three things. First, I..."This will encourage sufficient depth.

Think About What It Says
Re-read the story on page 35. What personality attributes has the candidate demonstrated?
* Initiative/Leadership: The candidate tried to resolve the situation by addressing it head-on.

* Empathy; The candidate tried to understand what was happening to the person. The candidate also
showed empathy in knowing what would resolve the teammate's insecurity.

¢ Compassion: Although the teammate was harming the team, the candidate wasn't angry at the team-
mate. His empathy led him to compassion.

* Humility: The candidate was able to admit to his own flaws (not only to the teammate, but also to the
interviewer),

* Teamwork/Helpfulness: The candidate worked with the teammate to break down the project into
manageable chunks.

You should think about your stories from this perspective. Analyze the actions you took and how you
reacted. What personality attributes does your reaction demonstrate?

In many cases, the answer is"none."That usually means you need to rework how you communicate the story
to make the attribute clearer. You don't want to explicitly say, "I did X because | have empathy," but you can
go one step away from that. For example:

¢ Less Clear Attribute:"! called up the client and told him what happened."

* More Clear Attribute (Empathy and Courage): "I made sure to call the client myself, because | knew
that he would appreciate hearing it directly from me,"

If you still can't make the personality attributes clear, then you might need to come up with a new story
entirely.

* So, tell me about yourself...

Many interviewers kick off the session by asking you to tell them a bit about yourself, or asking you to walk
through your resume. This is essentially a "pitch". It's your interviewer's first impression of you, so you want
to be sure to nail this.

Structure

A typical structure that works well for many people is essentially chronological, with the opening sentence
describing their current job and the conclusion discussing their relevant and interesting hobbies outside
of work (if any).

1. Current Role [Headline Only): "I'm a software engineer at Microworks, where I've been leading the
Android team for the last five years."

2. College: My background is in computer science, | did my undergrad at Berkeley and spent a few
summers working at startups, including one where | attempted to launch my own business,

3. Post College & Onwards: After college, | wanted to get some exposure to larger corporations so | joined
Amazon as a developer. It was a great experience. | learned a ton about large system design and | got to
really drive the launch of a key part of AWS. That actually showed me that | really wanted to be in a more

36 Cracking the Coding Interview, 6th Edition

V [Behavioral Questions

entrepreneurial environment.

4. Current Role (Details): One of my old managers from Amazon recruited me out to join her startup,
which was what brought me to Microworks. Here, | did the initial system architecture, which has scaled
pretty well with our rapid growth. | then took an opportunity to lead the Android team. | do manage a
team of three, but my rote is primarily with technical leadership: architecture, coding, etc.

5. Outside of Work: Outside of work, I've been participating in some hackathons—mostly doing iOS
development there as a way to learn it more deeply. I'm also active as a moderator on online forums
around Android development.

6. Wrap Up: I'm looking now for something new, and your company caught my eye. I've always loved the
connection with the user, and | really want to get back to a smaller environment too.

This structure works well for about 95% of candidates. For candidate with more experience, you might
condense part of it. Ten years from now, the candidate's initial statements might become just: "After my
CS degree from Berkeley, | spent a few years at Amazon and then joined a startup where | led the Android
team."

Hobbies
Think carefully about your hobbies. You mayor may not want to discuss them.

Often they're just fluff. If your hobby is just generic activities like skiing or playing with your dog, you can
probably skip it.

Sometimes though, hobbies can be useful. This often happens when:

» The hobby is extremely unique (e.g., fire breathing). It may strike up a bit of a conversation and kick off
the interview on a more amiable note.

» The hobby is technical.This not only boosts your actual skillset, but it also shows passion for technology.

+ The hobby demonstrates a positive personality attribute. A hobby like "remodeling your house yourself"
shows a drive to learn new things, take some risks, and get your hands dirty (literally and figuratively).

It would rarely hurt to mention hobbies, so when in doubt, you might as well.

Think about how to best frame your hobby though. Do you have any successes or specific work to show
from it (e.g., landing a part in a play)? Is there a personality attribute this hobby demonstrates?

Sprinkle in Shows of Successes
In the above pitch, the candidate has casually dropped in some highlights of his background.

» He specifically mentioned that he was recruited out of Microworks by his old manager, which shows that
he was successful at Amazon.

» He also mentions wanting to be in a smaller environment, which shows some element of culture fit
(assuming this is a startup he's applying for).

* He mentions some successes he's had, such as launching a key part of AWS and architecting a scalable
system.

* He mentions his hobbies, both of which show a drive to learn.

When you think about your pitch, think about what different aspects of your background say about you.
Can you can drop in shows of successes (awards, promotions, being recruited out by someone you worked
with, launches, etc.)? What do you want to communicate about yourself?

CrackingTheCodinglInterview.com \ 6th Edition 37

Vi

BigO

This is such an important concept that we are dedicating an entire (long') chapter to it.

Big 0 time is the language and metric we use to describe the efficiency of algorithms. Not understanding
it thoroughly can really hurt you in developing an algorithm. Not only might you be judged harshly for
not really understanding big 0, but you will also struggle to judge when your algorithm is getting faster or
slower.

Master this concept.

* An Analogy
Imagine the following scenario: You've got a file on a hard drive and you need to send it to your friend who
lives across the country. You need to get the file to your friend as fast as possible. How should you send it?

Most people's first thought would be email, FTP, or some other means of electronic transfer. That thought is
reasonable, but only haif correct.

If it's a small file, you're certainly right, it would take 5-10 hours to get to an airport, hop on a flight, and
then deliver it to your friend.

But what if the file were really, really large? Is it possible that it's faster to physically deliver it via plane?

Yes, actually it is, A one-terabyte (1 T8) file could take more than a day to transfer electronically. It would be
much faster to just fly it across the country. If your file is that urgent (and cost isn't an issue), you mightjust
want to do that.

What if there were no flights, and instead you had to drive across the country? Even then, for a really huge
file, it would be faster to drive.

* Time Complexity
This is what the concept of asymptotic runtime, or big 0 time, means. We could describe the data transfer

"algorithm" runtime as:

» Electronic Transfer: 0(s), where s is the size of the file. This means that the time to transfer the file
increases linearly with the size of the file. (Yes, this is a bit of a simplification, but that's okay for these
purposes.)

» Airplane Transfer: 0(1) with respect to the size of the file. As the size of the file increases, it won't take
any longer to get the file to your friend. The time is constant.

26 Cracking the Coding Interview, 6th Edition

VIl Big 0

No matter how big the constant is and how slow the linear increase is, linear will at some point surpass
constant.

0(1)

There are many more runtimes than this. Some of the most common ones are 0(log N),0(N log N),
0(N), O(NA) and 0(2"). There's no fixed list of possible runtimes, though.

You can also have multiple variables in your runtime. For example, the time to paint a fence that's w meters
wide and h meters high could be described as 0(wh). If you needed p layers of paint, then you could say
that the timeisO(whp).

Big O, Big Theta, and Big Omega

If you've never covered big 0 in an academic setting, you can probably skip this subsection. It might
confuse you more than it helps. This "FYI" is mostly here to clear up ambiguity in wording for people who
have learned big 0 before, so that they don't say, "But | thought big 0 meant..."

Academics use big 0, big 0 (theta), and big Q (omega) to describe runtimes.

¢ 0 (big O): In academia, big 0 describes an upper bound on the time. An algorithm that prints all the
values in an array could be described asO(N), but it could also be described as OfNAJ.0OA), or 0(2V)
(or many other big 0 times). The algorithm is at least as fast as each of these; therefore they are upper
bounds on the runtime. This is similar to a less-than-or-equai-to relationship. If Bob is X years old (tH
assume no one lives past age 130), then you could say X < 130. It would also be correct to say that
X < 1,0@00rX < 1,008,660. It's technically true (although not terribly useful). Likewise, a simple
algorithm to print the values in an array isO(N) as well asO(M®) or any runtime bigger than O(N).

* Q (big omega): In academia, 0 is the equivalent concept but for lower bound. Printing the values in
an array is fI(N) as well as fi(log M) and Q(I). After all, you know that it won't be faster than those
runtimes.

¢ 0 (big theta): In academia, 0 means both 0 and fi. That is, an algorithm is 0 (N) if it is both O(N) and
O(N). 0 gives a tight bound on runtime.

In industry (and therefore in interviews), people seem to have merged®© and 0 together. Industry's meaning
of big 0 is closer to what academics mean by 0, in that it would be seen as incorrect to describe printing an
array as O(N”). Industry would just say this is O(N).

For this book, we will use big 0 in the way that industry tends to use it; By always trying to offer the tightest
description of the runtime.

Best Case, Worst Case, and Expected Case

We can actually describe our runtime for an algorithm in three different ways.

51
CrackingTheCodinglInterview.com | 6th Edition

VI I Big O

Let's look at this from the perspective of quicksort. Quick sort picks a random element as a "pivot"and then
swaps values in the array such that the elements less than pivot appear before elements greater than pivot.
This gives a "partial sorf'Then it recursively sorts the left and right sides using a similar process.

* Best Case: Ifall elements are equal, then quick sortwill, on average, just traverse through the array once.
This is 0(N). (This actually depends slightly on the implementation of quick sort. There are implementa-
tions, though, that will run very quickly on a sorted array.)

*« Worst Case: What if we get really unlucky and the pivot is repeatedly the biggest element in the array?
(Actually, this can easily happen. If the pivot is chosen to be the first element in the subarray and the
array is sorted in reverse order, we'll have this situation.) In this case, our recursion doesn't divide the
array in half and recurse on each half. It just shrinks the subarray by one element. This will degenerate
to anO(N”) runtime.

« Expected Case: Usually, though, these wonderful or terrible situations won't happen. Sure, sometimes
the pivot will be very low or very high, but it won't happen over and over again. We can expect a runtime
ofO(N log N).

We rarely ever discuss best case time complexity, because it's not a very useful concept. After all, we could
take essentially any algorithm, special case some input, and then getan 0(1) time in the best case.

For many—probably most—algorithms, the worst case and the expected case are the same. Sometimes
they're different, though, and we need to describe both of the runtimes.

What is the relationship between best/worst/expected case and big O/theta/omega?

It's easy for candidates to muddle these concepts (probably because both have some concepts of "higher"
"lower"and "exactly right"), but there is no particular relationship between the concepts.

Best, worst, and expected cases describe the big 0 (or big theta) time for particular inputs or scenarios.

Big 0, big omega, and big theta describe the upper, lower, and tight bounds for the runtime.

* Space Complexity

Time is not the only thing that matters in an algorithm. We might also care about the amount of memory—
or space—required by an algorithm.

Space complexity is a parallel concept to time complexity. If we need to create an array of size n, this will
require 0(n) space. If we need a two-dimensional array of size nxn, this will require 0(n*) space.

Stack space in recursive calls counts, too. For example.code like this would take O(n) time and 0(n) space.

1 int sum(int n) { /* Ex |.V
2 if (n<=0) {

3 return &;

4 >

5 return n + sum(n-1);
6 1}

Each call adds a level to the stack.
1 sum(4)

2 -> sum(3)

3 -> sum(2)

4 sum(l)

5 -> sum(0)

Each ofthese calls is added to the call stack and takes up actual memory.

40 S| Cracking the Coding Interview, 6th Edition

VIl Big 0

However, just because you have n calls total doesn't mean it takes O(n) space. Consider the below func-
tion, which adds adjacent elements between 0 and n:

1 int pairSumSequencefint n) { /x Ex 2.%/
2 int sum = 0;

3 for (int i =0; i < n; i++) |
4 sum += pairSum(ij i + 1);
5 }

6 return sum;

7 >

8

9 int pairSum(int a, int b) {

10 return a + b;

11 >

There will be roughly O(n) calls to pairSum. However, those calls do not exist simultaneously on the call
stack, so you only need 0(1) space.

> Drop the Constants

It is very possible for 0(N) code to run faster than 0(1) code for specific inputs. Sig 0 just describes the
rate of increase.

For this reason, we drop the constants in runtime. An algorithm that one might have described as 0(2N)
isactuallyO(N).

Many people resist doing this. They will see code that has two (non-nested) for loops and continue this
0(2N). They think they're being more "precise." They're not.

Consider the below code:

Min and Max 1 Min and Max 2
1 int min » Integer. MAX_VALUE; 1 int min = Integer. MAX_VALUE;
2 int max = Integer. MIN_VALUE; 2 int max = Integer. MIN_VALUE;
3 for (int x ; array) |{ 3 for (int x : array) {
4 if x <min) min = x 4 if (x < min) min = x;
5 if (x > max) max = x; 5 >
6 } 6 for (int x : array) {
1 if (x > max) max = X.

8 >

Which one is faster? The first one does one for loop and the other one does two for loops. But then, the first
solution has two lines of code per for loop rather than one.

If you're going to count the number of instructions, then you'd have to go to the assembly level and take
into account that multiplication requires more instructions than addition, how the compiler would opti-
mize something, and all sorts of other details.

This would be horrendously complicated, so don't even start going down this road. Big O allows us to
express how the runtime scales. We just need to accept that it doesn't mean that O(N) is always better than
0(N’).

CrackingTheCodinginterview.com 16th Editon J 41

VLJ Big 0

* Drop the Non-Dominant Terms
What do you do about ari expression such as O(N3 + N)?That second N isn't exactly a constant. But it's
not especially important.

We already said that we drop constants.Therefore, 0(N? + N?) would be 0 (N?)- Ifwe don't care about that
latter N” term, why would we care about N? We don't.

You should drop the non-dominant terms,
« O(N? + N) becomesO(N?).

* O(N + log N) becomesO(M).

« 0(5*2" + 1ie@dN®®) becomes 0(2°).

We might still have a sum in a runtime. For example, the expression O(B? + A) cannot be reduced (without
some special knowledge of A and B).

The following graph depicts the rate of increase for some of the common big 0 times.

X o X 7 d @

o 0 (0] o/ (o)
o/

J/
/
l’/
/
Y &
,/.‘
o
/"
/
P
o

O(log x)

As you can see, Otx?) is much worse than 0(x), but it's not nearly as bad as 0(2") or0(x!}. There are lots
of runtimes worse thanO(x !) too, suchasO(x*) or0(2* * x!).
e Multi-Part Algorithms: Add vs. Multiply

Suppose you have an algorithm that has two steps. When do you multiply the runtimes and when do you
add them?

This is a common source of confusion for candidates.

26 Cracking the Coding Interview, 6th Edition

VIl Big 0

Add the Runtimes:0(A + B) Multiply theRuntimes:0(A*8)
1 for (int a : arrA) |{ 1 for (int a : arrA) {

2 print(a); 2 for (int b : arrB) {
3 } 3 print(a + “,” + b);
4 4 >

5 for (int b : arrB) { 5 >

6 print(b);

7 >

In the example on the left, we do A chunks of work then B chunks of work. Therefore, the total amount of
work isO(A + B).

In the example on the right, we do B chunks of work for each element in A. Therefore, the total amount of
work isO(A * 8).

In other words:
* Ifyour algorithm is in the form "do this, then, when you're all done, do that" then you add the runtimes.
* Ifyour algorithm is in the form "do this for each time you do that" then you multiply the runtimes.

It's very easy to mess this up in an interview, so be careful.

¢ Amortized Time

An Arraylist, or a dynamically resizing array, allows you to have the benefits of an array while offering
flexibility in size. You won't run out of space in the ArrayList since its capacity will grow as you insert
elements.

An ArrayList is implemented with an array. When the array hits capacity, the ArrayList class will create a
new array with double the capacity and copy all the elements over to the new array.

How do you describe the runtime of insertion? This is a tricky question.

The array could be full. If the array contains N elements, then inserting a new element will takeO(N) time.
You will have to create a new array of size 2N and then copy N elements over. This insertion will take O(N)
time.

However, we also know that this doesn't happen very often. The vast majority of the time insertion will be
in 0(1) time.

We need a concept that takes both into account. This is what amortized time does. It allows us to describe
that, yes, this worst case happens every once in a while. But once it happens, it won't happen again for so
long that the cost is"amortized."

In this case, what is the amortized time?

As we insert elements, we double the capacity when the size of the array is a power of 2. So after X elements,
we double the capacity at array sizes 1, 2,4,8,16,..., X. That doubling takes, respectively, 1,2,4, 8,16,32,
64,.,., X copies.

What isthesumof 1 +2+4 +8 + 16 + ... + X? Ifyou read this sum left to right, it starts with 1 and doubles
until it gets to X. If you read right to left, it starts with X and halves until it gets to 1.

What then is the sum ofX + *A + + % +...+ 1?This Is roughly 2X.

Therefore, X insertions take0(2X) time. The amortized time for each insertion is 0(1),

CrackingTheCodinglInterview.com | 6th Edition

VIl BigO

> Log N Runtimes

We commonly see 0(log N) in runtimes. Where does this come from?

Let's look at binary search as an example, In binary search, we are looking for an example x in an N-element
sorted array. We first compare x to the midpoint of the array. If x — middle, then we return. If x <
middle, then we search on the left side of the array. If x > middle, then we search on the right side of
the array.
search 9 within {1, 5, 8 9, 11, 13, 15, 19, 21}
compare 9 to 11 -> smaller,
search 9 within {1, 5, 8, 9, 11}
compare 9 to 8 -> bigger
search 9 within {9, 11}
compare 9 to 9
return

We start off with an N-element array to search. Then, after a single step, we're down to "/i elements. One
more step, and we're down to Hit, elements. We stop when we either find the value or we're down to just
one element.

The total runtime is then a matter of how many steps (dividing N by 2 each time) we can take until N
becomes 1.

N = 16

N =28 /% divide by 2 %/
M=4 /% divide by 2 */
N =2 /* divide by 2 V
N =1 /% divide by 2 V

We could look at this in reverse (going from 1 to 16 instead of 16 to 1). How many times we can multiply 1
by 2 until we get N?

N =1

N =2 /¥ multiply by 2 */
N =14 /¥ multiply by 2 %/
N =28 I multiply by 2 */
N = 16 /¥ multiply by 2 %/

What is k in the expression 2 = N? This is exactly what log expresses.

T-16 > logl6 = 4
logN = k => 2 = N

This is a good takeaway for you to have. When you see a problem where the number of elements in the
problem space gets halved each time, that will likely be a 0(log N) runtime.

This is the same reason why finding an element in a balanced binary search tree is O(log N). With each
comparison, we go either left or right. Half the nodes are on each side, so we cut the problem space in half
each time.

I What's the base ofthe log? That's an excellent question! The short answer is that it doesn't matter
for the purposes of big 0. The longer explanation can be found at "Bases of Logs" on page 630.

¢ Recursive Runtimes

Here's a tricky one. What's the runtime of this code?
1 int f(int n) {

48 Cracking the Coding Interview, 6th Edition

VIl Big 0

2 if (n<=1) {

3 return 1.

4 }

5 return f(n - 1) + f{n - 1);

6 1}

A lot of people will, for some reason, see the two calls to f and jump to 0(N”). This is completely incorrect.

Rather than making assumptions, let's derive the runtime by walking through the code. Suppose we call
f(4). This calls f(3) twice. Each ofthose calls tof (3) calls f(2), until we get down tof(1).

fC4>
f(3) f(3I
Fm f(2)

fL) f() f(i> om f(i) f(D fd)

How many calls are in this tree? (Don't count!)

The tree will have depth N. Each node (i.e., function call) has two children. Therefore, each level will have
twice as many calls as the one above it. The number of nodes on each level is:

Level | # Nodes | Also expressed as... Or...
0 1 2«
1 2 2 * previous level = 2 2!
2 4 2 * previous level =2 * 2' = 2* 2
3 8 2 * previous level = 2 * 2" = 2° 2°
4 16 2 * previous level =2 * 2% = 2 2"
Therefore, there will be 2°+ 2" + 2' + 23 + 2* + .. + 2* (whichis 2""" - 1) nodes. (See "Sum of

Powers of 2" on page 630.)

Try to remember this pattern. When you have a recursive function that makes multiple calls, the runtime will
often (but not always) took likeO(branches
call branches. In this case, this gives us 0(2").

tept.!y “where branches is the number of times each recursive

| As you may recall, the base of a log doesn't matter for big O since logs of different bases are
only different by a constant factor. However, this does not apply to exponents. The base of an
exponent does matter. Compare 2" and 8". If you expand 8", you get (2”)", which equals 2™,
which equals 2% * 2". As you can see, 8" and 2" are different by a factor of 2%".That is very much
not a constant factor!

The space complexity ofthis algorithm will beO(N). Although we haveO(2") nodes in the tree total, only
0(N) exist at any given time.Therefore, we would only need to haveO(N) memory available.

« Examples and Exercises

Big 0 time is a difficult concept at first. However, once it "dicks," it gets fairly easy. The same patterns come
up again and again, and the rest you can derive.

We'll start off easy and get progressively more difficult.

CrackingTheCodinglinterview.com | 6th Edition 51

VI BigO

Example 1

What is the runtime of the belowcode?

1 void foo(int[] array) {

2 int sum = 0;

3 int product = 1;

4 for (int i =0; i < array. length; i++) {
5 sura += arrayli];

6 }

1 for (int i =0; i < array.length; i++) {
8 product *= arrayl[il;

9 >

10 System. out.printin(sura + “, “ + product);
1 }

This will takeO(N) time. The fact that we iterate through the array twice doesn't matter.

Example 2
What is the runtime of the below code?

7 vofgrPriptPAU(intlk grraY) fength: i+0 {

3 for (int j =0; j < array. length; j++) {

4 System. out. printin(array[i] + ”,” + arrayfjl);
5

6

7

}

>
>

The inner for loop hasO(N) iterations and it is called N times. Therefore, the runtime isO(N?)-

Another way we can see this is by inspecting what the "meaning" of the code is. It is printing all pairs (two-
element sequences). There are 0(N?®) pairs; therefore, the runtime isO(N).

Example 3

This is very similar code to the above example, but now the inner for loop startsat i + 1,

1 void printUnorderedPairs(int[] array) {

2 for (int i =0; 1 < array. length; i++) {
for (int j =i + 1, j < array. length; j++) |
4 System.out.printin(arrayl[i]l + “,” + array[j]l);
A >
6 >
1 }

We can derive the runtime several ways.

I This pattern of for loop is very common. It's important that you know the runtime and that you
deeply understand it. You can't rely on just memorizing common runtimes. Deep comprehen-
sion is important.

Counting the lterations
The first time through j runs for N -1 steps. The second time, it's N- 2 steps.Then N-3 steps. And so on.

Therefore, the number of steps total is:
(N-1) + (N-2) + (N-3) + ... + 2 +1

26 Cracking the Coding Interview, 6th Edition

VI1jBig0

1 + 2+ 3 + ...+ H-I
= sum of 1 through N-I

Thesumofl throughN-lis (see "Sum of Integers 1 through N"on page 630), so the runtime will
be O(N’).

WhatltMeans

Alternatively, we can figure out the runtime by thinking about what the code "means." It iterates through
each pair of values for {i, j) where j is bigger than i.

Thereare N total pairs. Roughly half of those wil! have i < j and the remaining halfwill have i > j.This
code goes through roughly ¥/2 pairs so it does Off?) work.

Visualizing What It Does

The code iterates through the following (i, j)pairswhenN = 8:

{o, 1) (0, 2) (0, 3) (0, 4) (0j 5) <0, 6) {0, 7)
a1, 2y a, 3 @, 4) a, 5 {1, 6 A, N

2j 3 @, 4 @) 5 (@6 (27N

@i 4) @i s @ 6) @ 7N

(4, 5) <4, 6) (4, 7)

(5, 6) Bj 7N
6, 7)
This looks like half of an NxN matrix, which has size (roughly) Therefore, it takes 0(N?) time.

Average Work

We know that the outer loop runs N times. How much work does the inner loop do? It varies across itera-
tions, but we can think about the average iteration.

What is the average value oflj 2, 3, 4, 5, 6, 7, 8, 10? The average value will be in the
middle, so it will be roughly 5. (We could give a more precise answer, of course, but we don't need to for
big 0.)

What about for 1, 2, 3, . N?Theaverage value in this sequence is N/2.

Therefore, since the inner loop does Yi work on average and it is run N times, the total work is Vi' which
isSO(N’).

Example 4

This is similar to the above, but now we have two different arrays.

1 void printUnorderedPairs(int[] arrayA, int[] arrayB) {

2 for (int i = 0; i < arrayA. length; i++) |

3 for (int j = 0; j < arrayB. length; j++) {

4 if (arrayA[i] < arrayS[jl) |

5 System. out. println(arrayA[i] + + arrayBfjl);
6 >

7 >

8 >

9 >

We can break up this analysis. The if-statement within j's for loop is 0(1) time since it'sjust a sequence of
constant-time statements.

We now have this:

1 void printUnorderedPairs(int[] arrayA, int[] arrayB) {

CrackingTheCodinglInterview.com j 6th Edition 47

VIl BigO

2 for (int i =0; i < arrayA. length; i++) {

3 for (int j = 0; j < arrayB. length; j++) {

4 /x 0(1) work =/

5 }

6 }

1 >

For each element of arrayA, the inner for loop goes through b iterations, where b = arrayB.length,

tfa = arrayA. length, then the runtime isO(ab),

Ifyou said 0(N”)-then remember your mistake for the future. It's not 0(N”) because there are two different
inputs. Both matter. This is an extremely common mistake.

Examples

What about this strange bit of code?
1 void printUnorderedPairs(int[] arrayAj intjj arrays) {

2 for (int i = 0j i < arrayA. length; i++) |

3 for (int j = 0; j < arrayB. length; j++) {

4 for (int k = 0; k < 160800; k++) {
System.out.printin(arrayA[i]l] + ”,” + arrayB[jl);

6 }

7 >

3 }

9

Nothing has really changed here. 100,000 units of work is still constant, so the runtime is 0(ab).

Example 6

The following code reverses an array. What is its runtime?

2 vo]lgrrqyrﬁrsie(:irbt;[] iakraaX')rag/. length / 2; i++) |
3 int other = array. length - i - 1;

4 int temp = arrayl[il;

5 arnay[i] = array[other];

6 array[other] = temp;

7 >

8 }

This algorithm runs in O(N) time. The fact that it only goes through half of the array (in terms of iterations)
does not impact the big O time.

Example 7
Which of the following are equivalent to O(N)?Why?
¢« O(N + P),whereP < M
* 0(2N)
O(N + log N)
« O(N + M)
Let's go through these.
o IfP < then weknowthatN is the dominant term so we can droptheO(P).

¢ 0(2N) isO(N) since we drop constants.

48 Cracking the Coding Interview, 6th Edition

VIj Big 0

* O(N) dominates 0(log N), so we can drop the O(log N).

« Thereis no established relationship between N and M, so we have to keep both variables in there.
Therefore, all but the last one are equivalentto O(N),

Example 8

Suppose we had an algorithm that took in an array of strings, sorted each string, and then sorted the full
array. What would the runtime be?

Many candidates will reason the following: sorting each string is O(N log N) and we have to do this for
each string, so that's O(N*N log N). We also have to sort this array, so that's an additional 0(W log M)
work. Therefore, the total runtime is 0(N? log N + N log N), which isjustO(N‘' log N).

This is completely incorrect. Did you catch the error?

The problem is that we used N in two different ways. In one case, it's the length ofthe string (which string?).
And in another case, it's the length of the array.

In your interviews, you can prevent this error by either not using the variable "N"at all, or by only using it
when there is no ambiguity as to what N could represent.

In fact, | wouldn't even use a and b here, or m and n. It's too easy to forget which is which and mix them up.
An 0(a’) runtime is completely different from an 0(a*b) runtime.

Let's define new terms—and use names that are logical.

* Let S be the length ofthe longest string.

* Let a be the length ofthe array.

Now we can work through this in parts:

« Sorting each string isO(s log s),

« We have to do this for every string (and there are a strings), so that's 0(a*s log s).

+« Now we have to sort all the strings. There are a strings, so you'll may be inclined to say that this takes 0(a
log a) time. This is what most candidates would say. You should also take into account that you need
to compare the strings. Each string comparison takes 0(s) time.There are 0(a log a) comparisons,
therefore this will takeO(a*s log a)time.

If you add up these two parts, you get0(a*s(log a + log s)).

This is it. There is no way to reduce it further.

Example?

The following simple code sums the values of all the nodes in a balanced binary search tree. What is its

runtime?

1 int sum(Node node) {

2 if (node == null) {

3 return 0;

4 }

5 return sum(node, left) + node.value + sum(node.right);
6 >

lust because it's a binary search tree doesn't mean that there is a log in it!

We can look at this two ways.

CrackingTheCodinglInterview.com j 6th Edition a7

VI | Big O

What It Means

The most straightforward way is to think about what this means. This code touches each node in the tree
once and does a constant time amount of work with each "touch" (excluding the recursive calls).

Therefore, the runtime will be linear in terms of the number of nodes. If there are N nodes, then the runtime
isO(N).

Recursive Pattern

On page 44, we discussed a pattern for the runtime of recursive functions that have multiple branches.
Let's try that approach here.

We said that the runtime of a recursive function with multiple branches is typically ("branches‘a*”m).

There are two branches at each call, so we're looking at 0 (29°*™").

At this point many people might assume that something went wrong since we have an exponential algo-
rithm—that something in our logic is flawed or thatwe've inadvertently created an exponential time algo-
rithm (yikesl).

The second statement is correct. We do have an exponential time algorithm, but it's not as bad as one might
think. Consider what variable it's exponential with respect to.

What is depth?The tree is a balanced binary search tree. Therefore, if there are N total nodes, then depth
is roughlylog N.

By the equation above, we get 0 (2'°! V).

Recall what log, means:
2" =Q ~> logjQ = P

What is 2 N? There is a relationship between 2 and log, so we should be able to simplify this.

LetPp = 2%eN By the definition of logj, we can write this as logjP = log.It This meansthatP = N.
Let P = 2"
-> log.P = log”"N
-> P =N
> 2I0eN = N

Therefore, the runtime of this code is 0(N), where N is the number of nodes.

Example 10

The following method checks if a number is prime by checking for divisibility on numbers less than it. It only
needs to go up to the square root of n because if n is divisible by a number greater than its square root then
it's divisible by something smaller than it.

For example, while 33 is divisible by 11 (which is greater than the square root of 33), the "counterpart"to 11
is 3 (3* 11 =33). 33 will have already been eliminated as a prime number by 3.

What is the time complexity of this function?
1 boolean isPrime(int n) {

2 for (int x = 2; x * x <= n; x++) |
3 if (n % x »» 6) {

4 return false;
5

6

1

>
return true;

50 S| Cracking the Coding Interview, 6th Edition

VIl Big 0

8 >
Many people get this question wrong. If you're careful about your logic, it's fairly easy.

The work inside the for loop is constant. Therefore, we just need to know how many iterations the for loop
goes through in the worst case.

The for loop will startwhen x = 2 and end when x*x = n.Or, in otherwords, it stops when x = s/n (when
x equals the square root of n).

This for loop is really something like this:

boolean isPrime(int n) {

for (int x = 2; x <= sqrt(n); x++) {
if (n%x ==0) {
return false;

>

1

2

3

4

5 }
6

7 return true;
8

This runs in 0(*n) time.

Example 11

The following code computes n! (n factorial). What is its time complexity?
4 infrfggtorgpl(int n) {

return -1,
4 } else if (n ==0) {
5 return 1;
6 > else |
return n * factorial(n - 1);
8 }
9 >

This is just a straight recursion from nton-1ton-2down to 1. It wilt take 0(n) time.

Example 12
This code counts all permutations of a string.

1 void permutation(String str) {

2 permutation(str, ');

3 >

4

5 void permutation(String str, String prefix) {

6 if (str.lengthQ == 0) {

7 System. out. printin(prefix);

8 > else {

9 for (int i =0; i < str.lengthQ; i++) {

IS String rem = str.substring(0, i) + str.substring(i + 1);
11 perrriut3tion(rem, prefix + str.charAt(i)).
12 >

13 >

14 >

This is a (very!) tricky one. We can think about this by looking at how many times permutation gets called
and how long each call takes. We'll aim for getting as tight of an upper bound as possible.

CrackingTheCodinglInterview.com | 6th Edition 51

VI | Big O

How many times does permutation get called in its base case?

If we were to generate a permutation, then we woutd need to pick characters for each "slot," Suppose we
had 7 characters in the string. In the first slot, we have 7 choices. Once we pick the letter there, we have 6
choices for the next slot, (Note that this is 6 choices foreach of the 7 choices earlier.) Then 5 choices for the
next slot,and soon.

Therefore, the total number of options is 7*6*5*4*3*2* 1, which is also expressed as 7! (7 factorial).

This tells us that there are n! permutations. Therefore, permutation is called n| times in its base case
(when prefixis the full permutation).

How many times does permutation get called before its base case?

But, of course, we also need to consider how many times lines 9 through 12 are hit. Picture a large call tree
representing all the calls. There are n | leaves, as shown above. Each leaf is attached to a path of length n.
Therefore, we know there will be no more than n * n! nodes {function calls) in this tree.

How long does each function call take?
Executing line 7 takes 0(n) time since each character needs to be printed.

Line 10 and line 11 will also take 0(n) time combined, due to the string concatenation. Observe that the
sum of the lengths of rem, prefix, and str. charAt(i) will always be n.

Each node in our call tree therefore corresponds to 0(n) work.

What is the total runtime?

Since we are calling permutation0(n * n!) times (as an upper bound), and each one takes 0(n) time,
the totai runtime will not exceed 0(n”? * n!).

Through more complex mathematics, we can derive a tighter runtime equation (though not necessarily a
nice closed-form expression). This would almost certainly be beyond the scope of any normal interview.

Example 13

The following code computes the Nth Fibonacci number.
1 int fib(int n) {

if (n <= 0) return 0;

else if (n == 1) return 1;

return fib(n - 1) + fib(n - 2);

a b~ wN

}

We can use the earlier pattern we'd established for recursive calls: 0(branches?®’'''").

There are 2 branches per call, and we go as deep as N, therefore the runtime isO(2").

| Through some very complicated math, we can actually get a tighter runtime. The time is indeed
exponential, but it's actually closer to 0(1.6"). The reason that it's not exactly 0(2") is that, at
the bottom of the call stack, there is sometimes only one call. It turns out that a lot of the nodes
are at the bottom (as is true in most trees), so this single versus double call actually makes a big
difference. Saying 0(2") would suffice for the scope of an interview, though (and is still techni-
cally correct, if you read the note about big theta on page 39). You might get "bonus points" if
you can recognize that it'll actually be less than that.

Sl Cracking the Coding Interview, 6th Edition

VIl Big 0

Generally speaking, when you see an algorithm with multiple recursive calls, you're looking at exponential
runtime.

Example 14

The following code prints all Fibonacci numbers from 0 to n.What is its time complexity?

void allFib(int n) {
for (int i =8; i < n; i++) |
System. out. printinfi + “+ fib(l1));

int fib(int n) {

if (n <= 6) return 0;

else if (n =x 1) return 1;

0 return fib(n - 1) + fib(n - 2).
11 >

1
2
3
4
5 }
6
1
8
9
1

Many people will rush to concluding that since fib(n) takes 0(2") time and it's called n times, then it's
0(n2M).

Not so fast. Can you find the error in the logic?
The error is that the n is changing. Yes, fib(n) takes 0(2") time, but it matters what that value of n is.

Instead, let's walk through each call.

fib(l) -> ZLsteps
fib(2) -> 2J steps
fib(3) -> 2 steps
fib(4) -> 2 steps

fib(n) -> 2" steps
Therefore, the total amount of work is:
21+2J+23+24+ Lo+
As we showed on page 44, this is 2P*. Therefore, the runtime to compute the first n Fibonacci numbers

(using this terrible algorithm) is still 0(2").

Example 15

The following code prints all Fibonacci numbers from 0 to n. However, this time, it stores (i.e., caches) previ-
ously computed values in an Integer array. If it has already been computed. Itjust returns the cache. What
is its runtime?

1 void allFib(int n) {

2 int[] memo = new int[n + 1];

3 for (int i *0; i < n; 1++) {

4 System. out.printIin(i + “ + fib(ij memo));
5 >

6 1}

1

8 int fib(int n, int[] memo) {

9 if (n <= 0) return 0;

10 else if (n ==1) return 1;

11 else if (memo[n] > 0) return memo[n];

12

13 memo[n] = fib(n - 1, memo) + fib(n - 2, memo);

CrackingTheCodinglnterview.com | 16th Edition 51

VI BigO

14 return memoln];
15}

Let's walk through what this algorithm does.

fib(l) -> return 1

fib<2)
fib(l) -> return 1
fib(0) -> return O
store 1 at memo[2]

fib(3)
fib(2) -> lookup memo[2] -> return 1
flb(l) -> return 1
store 2 at rrtemo[3]

fib(4)
fib(3) -> lookup memo[3] —> return 2
fib(2) -> lookup mema[2] —> return 1
store 3 at memo[4]

fib(S)
fib(4) -> lookup meroo[4] —> return 3
fib(3) -> lookup meltto[3] -> return 2
store 5 at memo[S]

At each call to fib (i), we have already computed and stored the values for fib (i-1) and fib(i-2).
We just took up those values, sum them, store the new result, and return. This takes a constant amount of
time.

We're doing a constant amount of work N times, so thisisO(n) time.

This technique, called memoization, is a very common one to optimize exponential time recursive algo-
rithms.

Example 16

The following function prints the powers of 2 from 1 through n (inclusive). For example, if n is 4, it would
print 1,2, and 4, What is its runtime?

1 int powers0f2(int n) {

2 if (n <1) {

3 return 0;

4 } else if (n ==1) {

5 System. out, printin(l)j

6 return 1j

7 } else {

8 int prev = powers0f2(n / 2);
9 int curr = prev * 2;

10 System, out, printin(curr);
11 return currj

12 }

13 >

There are several ways we couid compute this runtime.

What It Does

Let's walkthrough a call like powersOf2(50),

powers0f2(50)
-> powers0f2(25)

54 Cracking the Coding Interview, 6th Edition

VIl Big O

-> powersOf2(12)
-> powers0f2(6)
-> powers0f2{3)
-> powersO0f2(l)
-> print & return 1
print a return 2
print & return 4
print & return 8
print & return 16
print & return 32
The runtime, then, is the number of times we can divide 50 (or n) by 2 until we getdown to the base case (1).
As we discussed on page 44, the number of times we can halve n until we get 1 isO(log n).

What It Means

We can also approach the runtime by thinking about what the code is supposed to be doing. It's supposed
to be computing the powers of 2 from 1 through n.

Each call topowers0f2 results in exactly one number being printed and returned (excluding what happens
in the recursive calls). So if the algorithm prints 13 values at the end, then powers0f2 was called 13 times.

In this case, we are told that it prints al) the powers of 2 between 1 and n. Therefore, the number of times
the function is called (which will be its runtime) must equal the number of powers of 2 between 1 and n.

There are log N powers of 2 between 1 and n. Therefore, the runtime is 0(log n).

Rate of Increase

A final way to approach the runtime is to think about how the runtime changes as n gets bigger. After all,
this is exactly what big 0 time means.

If N goes from P to P+I, the number of calls to powersOfTwo might not change at all. When will the
number of calls to powersOfTwo increase? It will increase by 1 each time n doubles in size.

So, each time n doubles, the number of calls to powersOfTwo increases by 1. Therefore, the number of
calls to powersOfTwo is the number of times you can double 1 until you get n. Itis x in the equation 2*
= n.

What is x?The valueof x is log n. This is exactly what meant by x = log n.

Therefore, the runtime isO(log n).
Additional Problems

VI.1 The following code computes the product of a and b.What is its runtime?
int product{int a, int b) {
int sum = 0;
for (int i =
sum += a;
}

return sumj

8; i < bj i++) {

>
VI.2 The following code computes a°. What is its runtime?

int power(int a, int b) {
if (b <0) {

CrackingTheCodinglnterview.com | 6th Edition 59

VIl BigO

return 0; // error
} else if (b ==0) {
return 1;
} else {
return a * power(a, b - 1);
S }

V1,3 The following code computes a % b. What is its runtime?
int mod(int a, int b) {
if (b <=0) {
return -1;
>
int div=a / b;
return a - div * b;

>
V1.4 The following code performs integer division. What is its runtime (assume a and b are both
positive)?
int div(int a, int b) {
int count 0;

int sum = b;
while (sum <= a) {
sura += b;
count++;

return count;

>

V1.5 The following code computes the [integer] square root of a number. If the number is not a
perfect square (there is no integer square root), then it returns -1. It does this by successive
guessing. If n is 100, it first guesses 50. Too high? Try something lower - halfway between 1
and 50. What is its runtime?

int sqrt{int n) {
return sqrt_helper(n, 1, n);

int sqrtjielper(int n, int min, int max) {
if (max < min) return -1; // no square root

int guess = (rain + max) / 2;
if (guess * guess == n) { // found it!
return guess;
} else if (guess * guess < n) { // too low
return sqrt_helper (n, guess + 1, max); // try higher
> else { // too high
return sqrt_helper(n, min, guess - 1); // try lower

}

V1.6 The following code computes the [integer] square root of a number. If the number is not
a perfect square (there is no integer square root), then it returns -1. It does this by trying
increasingly large numbers until it finds the right value (or is too high). What is its runtime?

int sart(int n) {
—for (int guess = 1, guess * guess <= n; guess++) {
if (guess guess == n) |
return guess,;

Si Cracking the Coding Interview, 6th Edition

VIl Big O

}

return -ij
VL7 If a binary search tree is not balanced, how long might it take (worst case) to find an element
in it?
V1.8 You are looking for a specific value in a binary tree, but the tree is not a binary search tree.
What is the time complexity of this?

V1.9 The appendToNew method appends a value to an array by creating a new, longer array and
returning this longer array. You've used the appendToNew method to create a copyArray
function that repeatedly calls appendToNew. How long does copying an array take?

int[] copyArray(int[] array) {
int[] copy = new int[0];
for (int value : array) {
copy = appendToNew (copy, value);

return copy.,

int[] appendToNew(int[] array, int value) {
Il copy all elements over to new array
int[] bigger = new int[array. length + 1];
for (int i =0; i < array. length; i++) {
bigger[i] = array[1];
}

[I add new element
bigger[bigger. length - 1] = value;
return bigger;

>
VI.10 The following code sums the digits in a number. What is its big O time?
int sumDigits(int n) {
int sum = 6;
while (n > 0) {
sum += n % 10;
n /= 10;
>
return sum;
>
VI.11 The following code prints all strings of length k where the characters are in sorted order. It
does this by generating all strings of length k and then checking if each is sorted. What is its
runtime?
int numChars = 26;

void printSortedStrings(int remaining) {
printSortedStrings(remainingj “7);
>

void printSortedStrings(int remaining, String prefix) {
if (remaining == 0) {
if (islnOrder (prefix)) {
System. out. printin(prefix);

CrackingTheCodinglInterview.com | 6th Edition 59

VIl BigO

} else {
for (int i = 0; i < numChars; i++) {
char ¢ = ithLetter (i);
printSortedStrings(remaining - prefix + ¢>j
>
}

>

boolean isInOrder (String s) {

for (int i =1; i < s.lengthQ; i++) {
int prev = ithletter(s.charAt(i - 1))
int curr = ithLetter (s.charAt(i)):

it (prev > curr) {
return false;
>
>
return true;

char ithletter(int i) {
return (char) (((int) "a’) + i),
}

V1,12 The following code computes the intersection (the number of elements in common) of two
arrays. It assumes that neither array has duplicates. It computes the intersection by sorting
one array (array b) and then iterating through array a checking {via binary search) if each
value is in b.What is its runtime?

int intersection(int[] a, int[] b) {
mergesort (b) ;
int intersect = 0;

for (int x : a) {
if (binarySearch(bj x) >= 0) {
intersect++;
>
>

return intersect:
>

Solutions

N

. O(b).Theforloopjustiteratesthrough b.
2. 0(b), The recursive code iterates through b cails, since it subtracts one at each level.

3. 0(1). It does a constant amount of work.

4. 0(Yb) The variable count will eventually equal The while loop iterates count times. Therefore, it
iterates times.

5. 0(log n). This algorithm is essentially doing a binary search to find the square root. Therefore, the
runtime is 0(log n).

6. 0(sqrt(n)). This is just a straightforward loop that stops when guess*guess > n (or, in other
words, when guess > sqrt(n)).

54 Cracking the Coding Interview, 6th Edition

VIl Big O

7. O(n), where ri is the number of nodes in the tree. The max time to find an element is the depth tree.The
tree could be a straight list downwards and have depth n.

8. 0(n). Without any ordering property on the nodes, we might have to search through all the nodes.

9. 0(n?), where n is the number of elements in the array. The first cafl to appendToNew takes 1 copy. The
second call takes 2 copies. The third call takes 3 copies. And so on. The total time will be the sum of 1
through n, which is 0(n?).

10.0(log n). The runtime will be the number of digits in the number. A number with d digits can have a
value upto IB", Ifn = 10%thend = log n. Therefore, the runtime is 0(log n).

n.O(kck), where k is the length of the string and ¢ is the number of characters in the alphabet. It takes
O(ck) time to generate each string. Then, we need to check that each of these is sorted, which takes
0(k) time.

12.0(b log b + a log b).First, we have to sort array b, which takes 0(b log b) time. Then, for each
element in a, we do binary search in 0(log b) time.The second part takes 0(a log b)time.

CrackingTheCodinglinterview.com | 6th Edition 59

Vii

Technical Questions

Technical questions form the basis for how many of the top tech companies interview. Many candidates are
intimidated by the difficulty of these questions, but there are logical ways to approach them.

¢ How to Prepare
Many candidates just read through problems and solutions. That's like trying to learn calculus by reading a
problem and its answer. You need to practice solving problems. Memorizing solutions won't help you much.

For each problem in this book (and any other problem you might encounter), do the following:

J. Try to solve the problem on your own. Hints are provided at the back of this book, but push yourself to
develop a solution with as little help as possible. Many questions are designed to be tough—that's okay!
When you're solving a problem, make sure to think about the space and time efficiency.

2. Write the code on paper. Coding on a computer offers luxuries such as syntax highlighting, code comple-
tion, and quick debugging. Coding on paper does not. Get used to this—and to how slow it is to write
and edit code—by coding on paper.

3. Testyourcode—on paper. This means testing the general cases, base cases, error cases, and so on. You'l
need to do this during your interview, so it's best to practice this in advance.

4. Type your paper code as-is into a computer. You will probably make a bunch of mistakes. Start a list of all
the errors you make so that you can keep these in mind during the actuai interview.

In addition, try to do as many mock interviews as possible. You and a friend can take turns giving each other
mock interviews. Though your friend may not be an expert interviewer, he or she may still be able to walk
you through a coding or algorithm problem. You'll also learn a lot by experiencing what it's like to be an
interviewer.

e What You Need To Know

The sorts of data structure and algorithm questions that many companies focus on are not knowledge
tests. However, they do assume a baseline of knowledge.

Core Data Structures, Algorithms, and Concepts

Most interviewers won't ask about specific algorithms for binary tree balancing or other complex algo-
rithms. Frankly, being several years out of school, they probably don't remember these algorithms either.

You're usually only expected to know the basics. Here's a list of the absolute, must-have knowledge:

oo
Cracking the Coding Interview, 6th Edition

VIl j Technical Questions

Data Structures

Algorithms

Concepts

Linked Lists

Breadth-First Search

Bit Manipulation

Trees, Tries, & Graphs

Depth-First Search

Memory (Stack vs. Heap)

Stacks & Queues

Binary Search

Recursion

Heaps

Merge Sort

Dynamic Programming

Vectors/ArrayLists

Quick Sort

Big 0 Time & Space

Hash Tables

For each ofthese topics, make sure you understand how to use and implement them and, where applicable,
the space and time complexity.

Practicing implementing the data structures and algorithm (on paper, and then on a computer) is also a
great exercise. It will help you learn how the internals of the data structures work, which is important for
many interviews.

I Did you miss that paragraph above? It's important. If you don't feel very, very comfortable with
each of the data structures and algorithms listed, practice implementing them from scratch.

In particular, hash tables are an extremely important topic. Make sure you are very comfortable with this
data structure.
Powers of 2 Table

The table below is useful for many questions involving scalability or any sort of memory limitation. Memo-
rizing this table isn't strictly required, but it can be useful. You should at least be comfortable deriving it.

Power of 2 Exact Value (X) Approx. Value X BygeBs, i:tt:. MB,

7 128

8 256

10 1024 1 thousand 1KB
16 65,536 64 KB
20 1,048,576 1 million 1MB
30 1,073,741,824 1 billion 1GS
32 4,294,967,296 4GB
40 1,099,511,627,776 1 trillion 1TB

For example, you could use this table to quickly compute that a bit vector mapping every 32-bit integer to
a boolean value could fit in memory on a }Zypical machine. There are 2" such integers. Because each integer
takes one bit in this bit vector, we need 2 bits (or bytes) to store this mapping. That's about half a giga-
byte of memory, which can beeasify held in memory on a typical machine.

If you are doing a phone screen with a web-based company, it may be useful to have this table in front of
you.

CrackingTheCgdinglinterview.com] 6th Edition 81

VIl j Technical Questions

> Walking Through a Problem

The below map/flowchart walks you through how to solve a problem. Use this in your practice. You can
download this handout and more at CrackingTheCodingInterview.com.

A Problem-Solving Flowchart

Listen Example
Pay very close attention to any Most examptes are too small or are special
information in the problem description. cases. Debug your example. Is there any
You probably need it all for an optimal way it's a special case? Is it big enough?
algorithm.

Brute Force *«e--

Get a brute-force solution as soon as
possible. Don't worry about developing
an efficient algorithm yet. State a naive
algorithm and its runtime, then optimize
from there. Don't code yet though!

Test o
Optimize
Test in this order:
Walk through your brute force with BUD

1. Conceptual test. Walk through your code optimization or try some of these ideas:

like you would for a detailed code review.

Look for any unused info. You usually
2. Unusual or non-standard code.
need all the information in a problem.

3. Hot spots, like arithmetic and null nodes.

Solve it manually on an example, then
4. Small test cases. It's much faster than a big reverse engineer your thought process.
test case and just as effective. How did you solve it?

5. Special cases and edge cases.

Solve it "incorrectly" and then think about

And when you find bugs, fix them carefully! why the algorithm fails. Can you fix those
issues?
| m p | emen t + Make a time vs. space tradeoff. Hash

tables are especially useful!

Your goal is to write beautiful code.

Modularize your code from the —_— - Wa | kT h rou g h _

beginning and refactor to clean up

anything that isn't beautiful. Now that you have an optimal solution, walk
through your approach in detail. Make sure

- . .
Keep talking! Your interviewer wants to you understand each detail before you start

hear how you approach the problem. coding.

61 Cracking the Coding Interview, 6th Edition

VIl j Technical Questions

We'll go through this flowchart in more detail.

What to Expect

Interviews are supposed to be difficult. If you don't get every—or any—answer immediately, that's okay!
That's the normal experience, and it's not bad.

Listen for guidance from the interviewer.The interviewer might take a more active or less active roie in your
problem solving. The level of interviewer participation depends on your performance, the difficulty of the
question, what the interviewer is looking for, and the interviewer's own personality.

When you're given a problem (or when you're practicing), work your way through it using the approach
below.

1. Listen Carefully

You've likely heard this advice before, but I'm saying something a bit more than the standard "make sure
you hear the problem correctly"advice.

Yes, you do want to listen to the problem and make sure you heard it correctly. You do want to ask questions
about anything you're unsure about.

But I'm saying something more than that.

Listen carefully to the problem, and be sure that you've mentally recorded any unique information in the
problem.

For example, suppose a question starts with one of the following lines. It's reasonable to assume that the
information is there for a reason.

+ "Given two arrays that are sorted, find..."

You probably need to know that the data is sorted. The optimal algorithm for the sorted situation is
probably different than the optimal algorithm for the unsorted situation.

* "Design an algorithm to be run repeatedly on a server that..."

The server/to-be-run-repeatedly situation is different from the run-once situation. Perhaps this means
that you cache data? Or perhaps itjustifies some reasonable precomputation on the initial dataset?

It's unlikely (although not impossible) that your interviewer would give you this information if it didn't affect
the algorithm.

Many candidates will hear the problem correctly. But ten minutes into developing an algorithm, some of
the key details of the problem have been forgotten. Now they are in a situation where they actually can't
solve the problem optimally.

Your first algorithm doesn't need to use the information. But if you find yourself stuck, or you're still working
to develop something more optimal, ask yourself if you've used all the information in the problem.

You might even find it useful to write the pertinent information on the whiteboard.

2, Draw an Example

An example can dramatically improve your ability to solve an interview question, and yet so many candi-
dates just try to solve the question in their heads.

81
CrackingTheCgdinglInterview.com] 6th Edition

VIl j Technical Questions

When you hear a question, get out of your chair, go to the whiteboard, and draw an example.
There's an art to drawing an example though. You want a good example.

Very typically, a candidate might draw something like this for an example of a binary search tree:

This is a bad example for several reasons. First, it's too small. You will have trouble finding a pattern in such
a small example. Second, it's not specific. A binary search tree has values. What if the numbers tell you
something about how to approach the problem? Third, it's actually a special case. It's notjust a balanced
tree, but it's also a beautiful, perfect tree where every node other than the leaves has two children. Special
cases can be very deceiving.

Instead, you want to create an example that is:
» Specific. It should use real numbers or strings (if applicable to the problem).
+ Sufficiently large. Most examples are too small, by about 50%,

» Not a special case. Be careful, it's very easy to inadvertently draw a special case. If there's any way your
example is a special case (even if you think it probably won't be a big deal), you should fix it,

Try to make the best example you can. If it later turns out your example isn't quite right, you canandshouid
fix it.
3. State a Brute Force

Once you have an example done (actually, you can switch the order of steps 2 and 3 in some problems),
state a brute force. It's okay and expected that your initial algorithm won't be very optimal.

Some candidates don't state the brute force because they think it's both obvious and terrible. But here's the
thing: Even if it's obvious for you, it's not necessarily obvious for all candidates. You don't want your inter-
viewer to think that you're struggling to see even the easy solution.

It's okay that this initial solution is terrible. Explain what the space and time complexity is, and then dive
into improvements.

Despite being possibly slow, a brute force algorithm is valuable to discuss. It's a starting point for optimiza-
tions, and it helps you wrap your head around the problem.

4. Optimize

Once you have a brute force algorithm, you should work on optimizing it. A few techniques that work well
are:

1. Look for any unused information. Did your interviewer tell you that the array was sorted? How can you
leverage that information?

2. Use a fresh example. Sometimes, just seeing a different example will unclog your mind or help you see
a pattern in the problem.

3. Solve it "incorrectly." Just like having an inefficient solution can help you find an efficient solution, having
an incorrect solution might help you find a correct solution. For example, if you're asked to generate a

61 Cracking the Coding Interview, 6th Edition

VIl j Technical Questions

random value from a set such that all values are equally likely, an incorrect solution might be one that
returns a semi-random value: Any value could be returned, but some are more likely than others. You
can then think about why that solution isn't perfectly random. Can you rebalance the probabilities?

4, Make time vs. space tradeoff. Sometimes storing extra state about the problem can help you optimize
the runtime.

5, Precompute information. Is there a way that you can reorganize the data (sorting, etc.) or compute some
values upfront that will help save time in the long run?

6, Use a hash table. Hash tables are widely used in interview questions and should be at the top of your
mind.

7, Think about the best conceivable runtime (discussed on page 72).

Walk through the brute force with these ideas in mind and look for BUD (page 67).

5. Walk Through

After you've nailed down an optimal algorithm, don't just dive into coding. Take a moment to solidify your
understanding of the algorithm.

Whiteboard coding is slow—very slow. So is testing your code and fixing it. As a result, you need to make
sure that you get it as close to "perfect" in the beginning as possible.

Walkthrough your algorithm and get a feel for the structure of the code. Know what the variables are and
when they change.

I What about pseudocode? You can write pseudocode if you'd like. Be careful about what you
write. Basic steps ("(1) Search array. (2) Find biggest, (3) Insert in heap.") or brief logic ("if p <
g, move p. else move q") can be valuable. But when your pseudocode starts having for loops
that are written in plain English, then you're essentially just writing sloppy code. It'd probably be
faster to just write the code.

if you don't understand exactly what you're about to write, you'll struggle to code it. It will take you longer
to finish the code, and you're more likely to make major errors.

6. Implement

Now that you have an optimal algorithm and you know exactly what you're going to write, go ahead and
implement it.

Start coding in the far top left corner of the whiteboard (you'll need the space). Avoid "line creep" (where
each line of code is written an awkward slant), it makes your code look messy and can be very confusing
when working in a whitespace-sensitive language, like Python.

Remember that you only have a short amount of code to demonstrate that you're a great developer. Every-
thing counts. Write beautiful code.

Beautiful code means:

* Modularized code. This shows good coding style. It also makes things easier for you. If your algorithm
uses a matrix initialized to {{1] 2, 3}, {4, 5, 6], }, don't waste your time writing this
initialization code. Just pretend you have a function initlncrementalMatrix(int size). Fil in
the details later if you need to.

81
CrackingTheCgdinglInterview.com] 6th Edition

VIl j Technical Questions

» Error checks. Some interviewers care a lot about this, while others don't. A good compromise here is to
add atodo and then just explain out loud what you'd like to test.

» Use other classes/structs where appropriate, if you need to return a list of start and end points from
a function, you could do this as a two-dimensional array, it's better though to do this as a list of
StartEndPair (or possibly Range) objects. You don't necessarily have to fill in the details for the class.
Just pretend it exists and deal with the details later if you have time.

» Good variable names. Code that uses single-letter variables everywhere is difficult to read. That's not to
say that there's anything wrong with using i and j, where appropriate (such as in a basic for-loop iter-
ating through an array). However, be careful about where you do this. If you write something like int
i = startOfChild(array), there might be a better name for this variable, such as startChild.

Long variable names can also be slow to write though. A good compromise that most interviewers will
be okay with is to abbreviate it after the first usage. You can use startChild the first time, and then
explain to your interviewer that you wilt abbreviate this as sc after this.

The specifics of what makes good code vary between interviewers and candidates, and the problem itself.
Focus on writing beautiful code, whatever that means to you.

If you see something you can refactor later on, then explain this to your interviewer and decide whether or
not it's worth the time to do so. Usually it is, but not always.

If you get confused (which is common), go back to your example and walk through it again.

7. Test
You wouldn't check in code in the real world without testing it, and you shouldn't "submit"code in an inter-

view without testing it either.

There are smart and not-so-smart ways to test your code though.

What many candidates do is take their earlier example and test it against their code. That might discover
bugs, but it'll take a really long time to do so. Hand testing is very slow. If you really did use a nice, big
example to develop your algorithm, then it'll take you a very long time to find that little off-by-one error at
the end of your code.

Instead, try this approach:

1. Start with a "conceptual”test. A conceptual test meansjust reading and analyzing what each line of code
does. Think about it like you're explaining the lines of code for a code reviewer, Does the code do what
you think it should do?

2. Weird looking code. Double check that line of code that says x = length - 2. Investigate that for
loop that starts at i = 1. White you undoubtedly did this for a reason, it's really easy to get itjust slightly
wrong.

3. Hot spots. You've coded long enough to know what things are likely to cause problems. Base cases
in recursive code. Integer division. Null nodes in binary trees. The Start and end of iteration through a
linked list. Double check that stuff.

4. Small test cases. This is the first time we use an actual, specific test case to test the code. Don't use that
nice, big 8-element array from the algorithm part. Instead, use a 3 or 4 element array. It'll likely discover
the same bugs, but it will be much faster to do so.

5. Special cases. Test your code against null or single element values, the extreme cases, and other special
cases.

61 Cracking the Coding Interview, 6th Edition

VIl j Technical Questions

When you find bugs (and you probably will), you should of course fix them. But don't just make the first
correction you think of. Instead, carefully analyze why the bug occurred and ensure that your fix is the best
one.

¢ Optimize & Solve Technique #1: Look for BUD

This is perhaps the most useful approach I've found for optimizing problems. "BUD" is a silly acronym for:
+ Bottlenecks

* Unnecessary work

*

Duplicated work

These are three of the most common things that an algorithm can "waste" time doing. You can walk through
your brute force looking for these things. When you find one ofthem, you can then focus on getting rid of it.

If it's still not optimal, you can repeat this approach on your current best algorithm.

Bottlenecks

A bottleneck is a part of your algorithm that slows down the overall runtime. There are two common ways
this occurs:

* You have one-time work that slows down your algorithm. For example, suppose you have a two-step
algorithm where you first sort the array and then you find elements with a particular property. The first
stepisO(N log N) and the second step is 0(N). Perhaps you could reduce the second step to 0(log
N) or0(1), but would it matter? Not too much. It's certainty not a priority, as the O(N log N) is the

bottleneck. Until you optimize the first step, your overall algorithm will be O(N log N).

* You have a chunk of work that's done repeatedly, like searching. Perhaps you can reduce that from 0(N)
toO(log N) oreven 0(1). That will greatly speed up your overall runtime.

Optimizing a bottleneck can make a big difference in your overall runtime.

I Example: Given an array of distinct integer values, count the number of pairs of integers that
have difference k. For example, given thearray {1, 7, 5, 9, 2, 12, 3} and the difference
k = 2, there are four pairs with difference 2: (1, 3)j (3, S), (5, 7), (7, 9),

A brute force algorithm is to go through the array, starting from the first element, and then search through
the remaining elements (which will form the other side of the pair). For each pair, compute the difference.
If the difference equals k, increment a counter of the difference.

The bottleneck here is the repeated search for the "other side" of the pair. It's therefore the main thing to
focus on optimizing.

How can we more quickly find the right "other side"? Well, we actually know the other side of (x, ?). It's
x + korx - k.lIfwe sorted the array, we could find the other side for each of the N elements inO(log
N) time by doing a binary search.

We now have a two-step algorithm, where both steps take O(N log H) time. Now, sorting is the new
bottleneck. Optimizing the second step won't help because the first step is slowing us down anyway.

We just have to get rid of the first step entirely and operate on an unsorted array. How can we find things
quickly in an unsorted array? With a hash table.

81
CrackingTheCgdinglnterview.com] 6th Edition

VIl j Technical Questions

Throw everything in thearray into the hash table. Then, to look up if x + k or x - k exist in the array, we
just look it up in the hash table. We can do this in 0(N) time.

Unnecessary Work

I Example: Print all positive integer solutions to the equation a* + b* = ¢ + d'where a, b, c,

and d are integers between 1 and 1000.

A brute force solution will just have four nested for loops. Something like:
1 n » 1006

2 for a from 1 to n

3 for b from 1 to n

4 for ¢ from 1 to n

5 for d from 1 to n

6 if a®+ b —c®+d°

7 print a, b, ¢, d

This algorithm iterates through all possible values of a, b, c, and d and checks if that combination happens
to work.

It's unnecessary to continue checking for other possible values of d. Only one could work. We should at least
break after we find a valid solution,

1 n = 1000

2 for a from 1 to n

3 for b from 1 to n

4 for ¢ from 1 to n

5 for d from 1 to n

6 if a®+ Db =»c®+d°

7 print a, b, ¢, d

8 break // break out of d’s loop

This won't make a meaningful change to the runtime—our algorithm is still 0(N?)—but it's still a good,
quick fix to make.

Is there anything else that is unnecessary? Yes. If there's only one valid d value for each (a, b, c), then we can
just compute it. This isjust simple math: d=Va'+b'-C*.
1 n = 1000

2 for a from | to n

3 for b from 1 to n

4 for ¢ from 1 to n

5 d = pow(@ + b% - ¢* 1/3) // Will round to int

6 if a> + b® == ¢® + d°® // Validate that the value works
7 print a, bj Cj d

The if statement on line 6 is important. Line 5 will always find a value for d, but we need to check that it's
the right integer value.

This will reduce our runtime from 0(N*) to 0(17).

Duplicated Work
Using the same problem and brute force algorithm as above, let's look for duplicated work this time.

The algorithm operates by essentially iterating through all (a, b) pairs and then searching all (¢, d)
pairs to find if there are any matches to that {a, b) pair.

61 Cracking the Coding Interview, 6th Edition

VIl j Technical Questions

Why do we keep on computing all (c, d) pairs foreach (a, b) pair? We should just create the list of (c,
d) pairs once. Then, when we have an (a, b) pair, find the matches within the (¢, d) fist. Wecan quickly
locate the matches by inserting each (c, d) pairinto a hash table that maps from the sum to the pair {or,
rather, the list of pairs that have that sum).
n = ieee
for ¢ from 1 to n
for d from 1 to n
result = ¢ + d°
append (c, d) to list at value map[result]
for a from 1 to n
for b from 1 to n
result = a®> + b?
list = map.get(result)
for each pair in list
print a, b, pair

N e I« - BENTN < IS I NSO R

- O

Actually, once we have the map of all the (C, d) pairs, we can just use that directly. We don't need to
generate the (a, b) pairs. Each (3] b) will already be in the map.

1 n = 1600
2 for ¢ from 1 to n
3 for d from 15to n
4 result = ¢ +d
append (c, d) to list at value map[resultj
6
7 for each result, list in map
8 for each pairl in list
9 for each pair2 in list
10 print pairl, pair2

This will take our runtime toO(N?).

e Optimize & Solve Technique #2: DIY (Do It Yourself)

The first time you heard about how to find an element in a sorted array (before being taught binary search),
you probably didn't jump to, "Ah ha! We'll compare the target element to the midpoint and thenrecurseon
the appropriate half."

And yet, you could give someone who has no knowledge of computer science an alphabetized pile of
student papers and they'll likely implement something like binary search to locate a student's paper.
They'll probably say, "Gosh, Peter Smith? He'll be somewhere in the bottom of the stack."They'll pick a
random paper in the middle(ish), compare the name to "Peter Smith" and then continue this process on the
remainder of the papers. Although they have no knowledge of binary search, they intuitively "get it."

Our brains are funny like this. Throw the phrase "Design an algorithm" in there and people often get ail
jumbled up. But give people an actual example—whether just of the data (e.g., an array) or of the real-life
parallel (e.g., a pile of papers)—and their intuition gives them a very nice algorithm.

I've seen this come up countless times with candidates. Their computer algorithm is extraordinarily slow,
but when asked to solve the same problem manually, they immediately do something quite fast. (And it's
not too surprisingly, in some sense. Things that are slow for a computer are often slow by hand. Why would
you put yourself through extra work?)

Therefore, when you get a question, tryjust working it through intuitively on a real example. Often a bigger
example will be easier.

CrackingTheCgdinglnterview.com] 6th Edition 81

VIl j Technical Questions

Example: Given a smaller string s and a bigger string b, design an algorithm to find all permuta-
tions of the shorter string within the longer one. Print the location of each permutation.

Think for a moment about how you'd solve this problem. Note permutations are rearrangements of the
string, so the characters in s can appear in any order in b. They must be contiguous though (not split by
other characters).

If you're like most candidates, you probably thought of something like: Generate all permutations of s and
then lookfor each in b. Since there are S! permutations, this will take 0(S ! * B) time, where S is the length
of s and B is the length of b.

This works, but it's an extraordinarily slow algorithm, it's actually worse than an exponential algorithm. If s
has 14 characters, that's over 87 billion permutations. Add one more character into s and we have 15 times
more permutations. Ouch!

Approached a different way, you could develop a decent algorithm fairly easily. Give yourself a big example,
like this one:

s: abbe
b: cbabadcbbabbcbabaabccbabe

Where are the permutations of s within b? Don't worry about how you're doing it. Just find them. Even a 12
year old could do this!

(No, really, go find them. I'll wait!)

I've underlined below each permutation,

s: abbe
b: cbabadcbbabbcbabaabccbabe

Did you find these? How?

*

Fewpeople—even those who earlier came up with the 0(S! 8) algorithm—actually generate alf the
permutations of abbe to locate those permutations in b. Almost everyone takes one of two (very simitar)

approaches:

1. Walk through b and took at sliding windows of 4 characters (since s has length 4). Check if each window
is a permutation of s.

2. Walk through b. Every time you see a character in s, check if the next four (the length of s) characters
area permutation of s.

Depending on the exact implementation of the "is this a permutation” part, you'll probably get a runtime of
either 0(B * S),0(B * S log S),0rO(B * S2). None of these are the most optimal algorithm [there
isan 0(B) algorithm), but it's a lot better than what we had before.

Try this approach when you're solving questions. Use a nice, big example and intuitively—manually, that
is—solve it for the specific example. Then, afterwards, think hard about how you solved it. Reverse engineer
your own approach.

Be particularly aware of any "optimizations" you intuitively or automatically made. For example, when you
were doing this problem, you might have just skipped right over the sliding window with "d" in it, since
"d" isn't in abbe.That's an optimization your brain made, and it's something you should at least be aware
of in your algorithm.

61
Cracking the Coding Interview, 6th Edition

VIl j Technical Questions

* Optimize & Solve Technique #3: Simplify and Generalize

With Simplify and Generalize, we implement a multi-step approach. First, we simplify or tweak some
constraint, such as the data type. Then, we solve this new simplified version of the problem. Finally, once we
have an algorithm for the simplified problem, we try to adapt it for the more complex version.

l Example: A ransom note can be formed by cutting words out of a magazine to form a new
entence. How would you figure out if a ransom note (represented as a string) can be formed
from a given magazine (string)?

To simplify the problem, we can modify it so that we are cutting characters out of a magazine instead of
whole words.

We can solve the simplified ransom note problem with characters by simply creating an array and counting
the characters. Each spot in the array corresponds to one letter. First, we count the number of times each
character in the ransom note appears, and then we go through the magazine to see if we have all of those
characters.

When we generalize the algorithm, we do a very similar thing. This time, rather than creating an array with
character counts, we create a hash table that maps from a word to its frequency.

¢ Optimize & Solve Technique #4: Base Case and Build

With Base Case and Build, we solve the problem first for a base case (e.g., n = 1) and then try to build up
from there. When we get to more complex/interesting cases (often n = 3 or n = 4), we try to build those
using the prior solutions,

I Example: Design an algorithm to print all permutations of a string. For simplicity, assume all char-
acters are unique.

Considera test string abcdefg.

Case "a" --> {"a"}

Case "ab" --> {"ah", "ba"}

Case "abe" --> ?
This is the first "interesting" case. If we had the answer to P("ab"), how could we generate P ("abc")?
Well, the additional letter is"c,"so we can just stick c in at every possible point. That is:

P("abc”) = insert "c¢" into all locations of all strings in p(“ab”)
P(“abc”) = insert "¢" into all locations of aJII strings in {“ab’V'ba”}
P("abc”) = merge ({"cab”, “acb”, “abc”}, {“cba’, “bea”, bac”)

P(“abc”) = {“cab”, “ach”. “abc”, “cba”, “bea”, bac”]

Now that we understand the pattern, we can develop a general recursive algorithm. We generate all permu-
tations of a string s;i... S, by "chopping off" the last character and generating all permutations of s,...
sn 1. Once we have the list of all permutations of S|. .. S * ; we iterate through this list. For each string in it,
we insert s, into every location of the string.

Base Case and Build algorithms often lead to natural recursive algorithms.

CrackingTheCgdinglInterview.com] 6th Edition 81

VIl j Technical Questions

¢ Optimize & Solve Technique #5: Data Structure Brainstorm

This approach is certainly hacky, but it often works. We can simply run through a list of data structures and
try to apply each one. This approach is useful because solving a problem may be trivial once it occurs to us
to use, say, a tree.

I Example: Numbers are randomly generated and stored into an (expanding) array. How would
you keep track of the median?

Our data structure brainstorm might look like the fotlowing:
» Linked list? Probably not. Linked lists tend not to do very well with accessing and sorting numbers.

* Array? Maybe, but you already have an array. Could you somehow keep the elements sorted? That's
probably expensive. Let's hold off on this and return to it if it's needed,

» Binary tree? This is possible, since binary trees do fairly well with ordering. In fact, if the binary search
tree is perfectly balanced, the top might be the median. But, be careful—if there's an even number of
elements, the median is actually the average of the middle two elements. The middle two elements can't
both be at the top. This is probably a workable algorithm, but let's come back to it.

* Heap? A heap is really good at basic ordering and keeping track of max and mins. This is actually
interesting—if you had two heaps, you could keep track of the bigger half and the smaller half of the
elements. The bigger half is kept in a min heap, such that the smallest element in the bigger half is at
the root. The smaller halfis kept in a max heap, such that the biggest element of the smaller half is at the
root. Now, with these data structures, you have the potential median elements at the roots. If the heaps
are no longer the same size, you can quickly "rebalance" the heaps by popping an element off the one
heap and pushing it onto the other.

Note that the more problems you do, the more developed your instinct on which data structure to apply
will be. You will also develop a more finely tuned instinct as to which of these approaches is the most useful.

* Best Conceivable Runtime (BCR)

Considering the best conceivable runtime can offer a useful hint for some problem.

The best conceivable runtime is, literally, the best runtime you could conceive of a solution to a problem
having. You can easily prove that there is no way you could beat the BCR.

For example, suppose you want to compute the number of elements that two arrays (of length A and B)
have in common. You immediately know that you can't do that in better than 0(A + B) time because you
have to "touch"each element in eacharray.O(A + B)istheBCR,

Or, suppose you want to print all pairs of values within an array. You know you can't do that in better than
0(N?) time because there are N° pairs to print.

Be careful though! Suppose your interviewer asks you to find all pairs with sum k within an array (assuming
all distinct elements). Some candidates who have not fully mastered the concept of BCR will say that the
BCR isO(N®) because you have to look at N? pairs.

That's not true. Just because you want all pairs with a particular sum doesn't mean you have to look at all
pairs. In fact, you don't.

61 Cracking the Coding Interview, 6th Edition

VIl j Technical Questions

I What's the relationship between the Best Conceivable Runtime and Best Case Runtime? Nothing
at all! The Best Conceivable Runtime is for a problem and is largely a function of the inputs and
outputs. It has no particular connection to a specific algorithm. In fact, if you compute the
Best Conceivable Runtime by thinking about what your algorithm does, you're probably doing
something wrong. The Best Case Runtime is for a specific algorithm (and is a mostly useless

value).

Note that the best conceivable runtime is not necessarily achievable. It says only that you can't do better
than it.

An Example of How to Use BCR

Question: Given two sorted arrays, find the number of elements in common. The arrays are the same length
and each has all distinct elements.

Let's start with a good example. We'll underline the elements in common.
A: 13 27 35 40 49 55 59
B: 17 35 39 40 55 58 60

A brute force algorithm for this problem is to start with each element in A and search for it in 8. This takes
0(N?) time since for each of N elements in A, we need to do an 0(N) search in B,

The BCRisO(N), because we know we will have to look at each element at least once and there are 2N total
elements. (If we skipped an element, then the value of that element could change the result. For example,
if we never looked at the last value in B, then that 60 could be a 59.)

Let's think about where we are right now. We have an O(N’) algorithm and we want to do better than
that—potentially, but not necessarily, as fast as O(N).

Brute Force: O(NY)
Optimal Algorithm: ?
BCR: 0 (N)

What is between O(N') and 0{N)? Lots of things. Infinite things actually. We could theoretically have an
algorithm that's O(N log(log(log(log(N))))). However, both in interviews and in real life, that
runtime doesn't come up a whole lot.

I Try to remember this for your interview because it throws a lot of people off. Runtime is not a
multiple choice question. Yes, it's very common to have a runtime that's O(log N),0(N),0(N
log N), 0(N”) or 0(2"). But you shouldn't assume that something has a particular runtime by
sheer process of elimination. In fact, those times when you're confused about the runtime and
so you want to take a guess—those are the times when you're most likely to have a non-obvious
and less common runtime. Maybe the runtime is O(NZK), where N is the size of the array and K is
the number of pairs. Derive, don't guess.

Most likely, we're driving towards an O(N) algorithm oran O(N log N) algorithm. What does that tell us?

Ifweimagineourcurrentalgorithm'sruntimeasO(N x N), then getting toO{N) orO(N x log N) might
mean reducing that second O(N) in the equation toO(l)orO(log N).

I This is one way that BCR can be useful. We can use the runtimes to get a"hint"for what we need
to reduce.

CrackingTheCgdinginterview.com]6th Edition 81

VIl j Technical Questions

That second 0(N) comes from searching. The array is sorted. Can we search in a sorted array in faster than
O(N) time?

Why, yes. We can use binary search to find an element in a sorted array in 0(log N) time.

We now have an improved algorithm: 0 (N log N).
Brute Force: O(N")
Improved Algorithm: O(N log N)
Optimal Algorithm: ?
SCR: 0(N)

Can we do even better? Doing better likely means reducing that O(log N) to 0(1).

In general, we cannot search an array—even a sorted array—in better than 0 (log N) time. This is not the
general case though. We're doing this search over and over again.

The BCRis telling us that we will never, ever have an algorithm that's faster than O(N). Therefore, any work
we do in O(N) time is a "freebie"—it won't impact our runtime.

Re-read the list of optimization tips on page 64. Is there anything that can help us?

One ofthe tips there suggests precomputing or doing upfront work. Any upfront work we do inO(N) time
is a freebie. It won't impact our runtime.

| This is another place where BCR can be useful. Any work you do that's less than or equal to the
BCR is "free," in the sense that it won't impact your runtime. You might want to eliminate it even-
tually, but it's nota top priority just yet.

Our focus is still on reducing search from 0(10g N) to 0(1). Any precomputation that's 0(N) or less is
"free."

In this case, we can just throw everything in B into a hash table. This will take 0(N) time. Then, we just go
through A and look up each element in the hash table. This look up (or search) is 0(1), so our runtime is
O(N).

Suppose our interviewer hits us with a question that makes us cringe: Can we do better?

No, not in terms of runtime. We have achieved the fastest possible runtime, therefore we cannot optimize
the big 0 time. We could potentially optimize the space complexity,

| This is another place where BCR is useful. It tells us that we're "done" in terms of optimizing the
runtime, and we should therefore turn our efforts to the space complexity.

In fact, even without the interviewer prompting us, we should have a question mark with respect to our
algorithm. We would have achieved the exact same runtime if the data wasn't sorted. So why did the inter-
viewer give us sorted arrays? That's not unheard of, but it is a bit strange.

Let's turn back to our example.
A: 13 27 35 49 49 55 59
6: 17 35 39 40 ~ 58 60

We're now looking for an algorithm that:

* Operates in 0(1) space (probably). We already have an 0(N) space algorithm with optimal runtime. If
we want to use less additional space, that probably means no additional space. Therefore, we need to
drop the hash table.

61
Cracking the Coding Interview, 6th Edition

VIl j Technical Questions

* Operates in O(N) time (probably). We'll probably want to at feast match the current best runtime, and
we know we can't beat it.

» Uses the fact that the arrays are sorted.

Our best algorithm that doesn't use extra space was the binary search one. Let's think about optimizing
that. We can try walking through the algorithm.

13. Not found.

1. Do a binary search in B for A[0]
, Do a binary sesrch In BforA[1] = 27. Not found.

2
3. Do a binary sesrch in B for A[2] 35. Found at B[1]
4

. Do a binary search in B forA[3] 40. Found at B[5]

49, Not found.

5. Do a binary search in B for A[4]
6.
Think about BUD. The bottleneck is the searching. Is there anything unnecessary or duplicated?

It's unnecessary that A[3] = 40 searched over ail of B. We know that we just found 35 at B[1], so 40
certainly won't be before 35.

Each binary search should start where the last one left off.

In fact, we don't need to do a binary search at ali now. We can just do a linear search. As long as the linear
search in B is just picking up where the last one left off, we know that we're going to be operating in linear
time.

17.Stop at B[0] = 17.Not found

1. Do alinear search in BforA[0] 13. Start at B[0]

27.Start at B[0] 17.Stop at B[I] = 35.Not found

2, Do alinear search in B for A[1]

Do alinesr search in B for A[2] 35.Start 3t B[] 35.Stopat B[I] = 35.Found.

Eal

39.Stop at B[3] = 40.Found.

Do a linear search in B for A[3] 40. Start at B[2]

5. Do 3 linear search in BforA[4] 40.Stop at B[4] = 55.Found.

49, Start at B[3]

This algorithm is very similar to merging two sorted arrays. It operates in O(M) time and 0(1) space.

We have now reached the BCR and have minimal space. We know that we cannot do better,

I This is another way we can use BCR. If you ever reach the BCR and have 0(1) additional space,
then you know that you C3n't optimize the big 0 time or space.

Best Conceivable Runtime is not a "real"algorithm concept, in that you won't find it in algorithm textbooks.
But | have found it personally very useful, when solving problems myself, as well as while coaching people
through problems.

If you're struggling to grasp it, make sure you understand big O time first (page 38). You need to master
it. Once you do, figuring out the BCR of a problem should take literally seconds.

81
CrackingTheCgdinglinterview.com] 6th Edition

VIl j Technical Questions

* Handling Incorrect Answers

One of the most pervasive—and dangerous—rumors is that candidates need to get every question right.
That's not quite true.

First, responses to interview questions shouldn't be thought of as "correct" or "incorrect." When | evaluate
how someone performed in an interview, | never think, "How many questions did they get right?" It's not a
binary evaluation. Rather, it's about how optimal their final solution was, how long it took them to get there,
how much help they needed, and how clean was their code. There is a range of factors.

Second, your performance is evaluated in comparison to other candidates. For example, if you solve a ques-
tion optimally in 15 minutes, and someone else solves an easier question in five minutes, did that person do
better than you? Maybe, but maybe not. If you are asked really easy questions, then you might be expected
to get optimal solutions really quickly. But if the questions are hard, then a number of mistakes are expected.

Third, many—possibly most—questions are too difficult to expect even a strong candidate to immediately
spit out the optimal algorithm. The questions | tend to ask would take strong candidates typically 20 to 30
minutes to solve.

In evaluating thousands of hiring packets at Google, | have only once seen a candidate havea"f1awless"set
of interviews. Everyone else, including the hundreds who got offers, made mistakes.

¢ When You've Heard a Question Before

If you've heard a question before, admit this to your interviewer. Your interviewer is asking you these ques-
tions in order to evaluate your problem-solving skills. If you already know the question, then you aren't
giving them the opportunity to evaluate you.

Additionally, your interviewer may find it highly dishonest if you don't reveal that you know the question.
(And, conversely, you'll get big honesty points if you do reveaf this.)

* The "Perfect” Language for Interviews

At many of the top companies, interviewers aren't picky about languages. They're more interested in how
well you solve the problems than whether you know a specific language.

Other companies though are more tied to a language and are interested in seeing how well you can code
in a particular language.

If you're given a choice of languages, then you should probably pick whatever language you're most
comfortable with.

That said, if you have several good languages, you should keep in mind the following.
Prevalence

It's not required, but it is ideal for your interviewer to know the language you're coding in. A more widely
known language can be better for this reason.

Language Readability

Even if your interviewer doesn't know your programming language, they should hopefully be able to basi-
cally understand it. Some languages are more naturally readable than others, due to their similarity to other
languages.

61 Cracking the Coding Interview, 6th Edition

VIl j Technical Questions

For example, Java is fairly easy for people to understand, even ifthey haven't worked in it. Most people have
worked in something with Java-like syntax, such as C and C++.

However, languages such as Scala or Objective C havefairty different syntax.
Potential Problems

Some languages just open you up to potential issues. For example, using C++ means that, in addition to ail
the usual bugs you can have in your code, you can have memory management and pointer issues.

Verbosity

Some languages are more verbose than others. Java for example is a fairly verbose language as compared
with Python. Just compare the following code snippets.

Python:

1 diet = {"left”: I, “right”: 2, “top”: 3, “bottom”: 4}

Java:

1 HashMap<String, Integer> diet = new HashMap<String, Integer>()
2 diet.put (“left”, 1);

3 diet.put("right", 2);

4 dict.put0 top”, 3);

5 diet. put ("bottom”, 4);

However, some of the verbosity of Java can be reduced by abbreviating code. | could imagine a candidate
on a whiteboard writing something like this:

1 HM<S, I> diet = new HMZS, I>()
2 dict. put (“left”, 1)

3 L “right”, 2

4 “top”, 3

5 “bottom”, 4

The candidate would need to explain the abbreviations, but most interviewers wouldn't mind.

Ease of Use

Some operations are easier in some languages than others. For example, in Python, you can very easily
return multiple values from a function. In Java, the same action would require a new class. This can be
handy for certain problems.

Similar to the above though, this can be mitigated by just abbreviating code or presuming methods that
you don't actually have. For example, ifone language provides a function to transpose a matrix and another
language doesn't, this doesn't necessarily make the first language much better to code in (for a problem
th3t needs such a function). You could just assume that the other language has a similar method.

* What Good Coding Looks Like

You probably know by now that employers want to see that you write "good, clean"code. But what does this
really mean, and how is this demonstrated in an interview?

Broadly speaking, good code has the following properties:

* Correct: The code should operate correctly on all expected and unexpected inputs.

« Efficient: The code should operate as efficiently as possible in terms of both time and space. This "effi-
ciency" includes both the asymptotic (big 0) efficiency and the practical, real-life efficiency. That is, a

81
CrackingTheCgdinglnterview.com] 6th Edition

VIl j Technical Questions

constant factor might get dropped when you compute the big 0 time, but in real life, it can very much
matter.

» Simple: If you can do something in 10 lines instead of 100, you should. Code should be as quick as
possible for a developer to write.

* Readable: A different developer should be able to read your code and understand what it does and
how it does it. Readable code has comments where necessary, but it implements things in an easily
understandable way. That means that your fancy code that does a bunch of complex bit shifting is not
necessarily good code.

* Maintainable: Code should be reasonably adaptable to changes during the life cycle of a product and
should be easy to maintain by other developers, as well as the initial developer.

Striving for these aspects requires a balancing act. For example, it's often advisable to sacrifice some degree
of efficiency to make code more maintainable, and vice versa.

You should think about these elements as you code during an interview. The following aspects of code are
more specific ways to demonstrate the earlier list.

Use Data Structures Generously

Suppose you were asked to write a function to add two simple mathematical expressions which are of
the form Ax®> + Bx® + ... (where the coefficients and exponents can be any positive or negative real
number). That is, the expression is a sequence of terms, where each term is simply a constant times an
exponent. The interviewer also adds that she doesn't want you to have to do string parsing, so you can use
whatever data structure you'd like to hold the expressions.

There are a number of different ways you can implement this.

Bad Implementation

A bad implementation would be to store the expression as a single array of doubles, where the kth element
corresponds to the coefficient of the x* term in the expression. This structure is problematic because it
could not support expressions with negative or non-integer exponents. It would also require an array of
1000 elements to store just the expression x'™®.

1 int[] suitt(double[] expr!|, doublel[] expr2) {

2

3}

Less Bad Implementation

A slightly less bad implementation would be to store the expression as a set of two arrays, coefficients
and exponents. Under this approach, the terms of the expression are stored in any order, but "matched"
such that the ith term of the expression is represented by coefficients [i] * &omens!tys

Under this implementation, if coefficients[p] = kand exponents[p] = m, then the pth term is
kx"\ Although this doesn't have the same limitations as the earlier solution, it's still very messy. You need
to keep track of two arrays for just one expression. Expressions could have "undefined" values if the arrays
were of different lengths. And returning an expression is annoying because you need to return two arrays.

1 ??? sum(double[] coeffsl, doublet] exponl, doublet] coeffs2, doublet] expon2) {
2

3 >

61
Cracking the Coding Interview, 6th Edition

VIl j Technical Questions

Good Implementation

A good implementation for this problem is to design your own data structure for the expression.

1 class ExprTerra {
double coefficient;
double exponent;

2
3
4
5
6 ExprTermf] sum(ExprTerm[] expr!|, ExprTerm[] expr2) {
7

8

>

Some might (and have) argued that this is "over-optimizing." Perhaps so, perhaps not. Regardless of whether
you think it's over-optimizing, the above code demonstrates that you think about how to design your code
and don't just stop something together in the fastest way possible.

Appropriate Code Reuse

Suppose you were asked to write a function to check if the value of a binary number (passed as a string)
equals the hexadecimal representation ofa string.

An elegant implementation of this problem leverages code reuse.

1 boolean conipareBinToHex(String binary. String hex) {
2 int nl = convertFromBase(binary, 2);

3 int n2 = convertFrom8ase (hex, 16);

4 if (nl <0 [] n2<0) {

5 return false;

6

7 return nl == n2;

5)

9

10 int convertFrom8ase (String number, int base)

11 if (base <: 2 || (base > 10 && base != 16)) return *
12 int value = 0;

13 for (int i = number.length() - 1. i >=0; j--y {
14 int digit = digitToValue (number. charAt(:

15 if (digit < 0 || digit >= base) {

16 return -1,

17

18 int exp = number. length() - 1 - i;

19 value += digit * Math.pow(base, exp);

20

21 return value;

22 >

23

24 int digitToValue(char ¢) { ... >

We coufd have implemented separate code to convert a binary number and a hexadecimal code, but
this just makes our code harder to write and harder to maintain. Instead, we reuse code by writing one
convertFromSase method and one digitToValue method.

Modular

Writing modular code means separating isolated chunks of code out into their own methods. This helps
keep the code more maintainable, readable, and testable.

CrackingTheCgdinglInterview.com] 6th Edition

VIl j Technical Questions

Imagine you are writing code to swap the minimum and maximum element in an integer array. You could
implement it all in one method like this:

1 void swapMinMax (int[] array) {

2 int minlndex = 0;

3 for (int 1 = 1; i < array.length; i++) {
4 if (array[i] < array[minindex]) {

5 minlndex = i;

6 >

7 1

3

9 int maxIndex = 0;

10 for (int i = 1; i < array.length; i++) {
1 if (array[i]l > array[maxlIndex]) {

12 maxindex = i

13 >

14 >

15

16 int temp = array[minindex];

17 array[minindex] = array[maxIndex];

18 array[maxIndex] = temp;

19 '}

Or, you could implement in a more modular way by separating the relatively isolated chunks of code into
their own methods,

void swapMinMaxBetter (int[] array) {

int minindex = getMinindex(array);

int maxindex = getflaxIndex(array);
swap (array, minlndex, maxlIndex);

1

2

3

4

5 >
6

7 int getMinIindex(int[] array) { ...)

8 int getMaxIndex(int[] array) { ... }

9 void swap(int[] array, int m, int n) { ... }

While the non-modular code isn't particularly awful, the nice thing about the modular code is that it's easily
testable because each component can be verified separately. As code gets more complex, it becomes
increasingly important to write it in a modular way. This will make it easier to read and maintain. Your inter-

viewer wants to see you demonstrate these skills in your interview.

Flexible and Robust

Just because your interviewer only asks you to write code to check if a normal tic-tac-toe board has a
winner, doesn't mean you must assume that it's a 3x3 board. Why not write the code in a more general way
that implements it for an NxN board?

Writing flexible, general-purpose code may also mean using variables instead of hard-coded values or
using templates / generics to solve a problem. If we can write our code to solve a more general problem,
we should.

Of course, there is a limit. If the solution is much more complex for the general case, and it seems unneces-
sary at this point in time, it maybe better just to implement the simple, expected case.

Error Checking

One sign of a careful coder is that she doesn't make assumptions about the input. Instead, she validates that
the input is what it should be, either through ASSERT statements or if-statements.

61 Cracking the Coding Interview, 6th Edition

VIl j Technical Questions

For example, recall the earlier code to convert a number from its base i (e.g., base 2 or base 16) representa-
tion to anint.

1 int convertToBase(String number, int base) {

2 if (base < 2 || (base > 16 S& base 1= 16)) return -1;
3 int value = 0;

4 for (int i = number, length() - 1; i >=0; i--) {
5 int digit = digitToValue (number.charAt(i));

6 if (digit < 0 M digit >= base) {

7 return -1;

8 }

9 int exp = number. length() - 1 - i;

10 value += digit * Math.pow(base, exp);

11 >

12 return value;

13 >

In line 2, we check to see that base is valid (we assume that bases greater than 10, other than base 16, have
no standard representation in string form). In line 6, we do another error check: making sure that each digit
falls within the allowable range.

Checks like these are critical in production code and, therefore, in interview code as well.

Of course, writing these error checks can be tedious and can waste precious time in an interview. The
important thing is to point out that you would write the checks. If the error checks are much more than a
quick if-statement, it may be best to leave some space where the error checks would go and indicate to your
interviewer that you'll fill them in when you're finished with the rest of the code,

¢ Don't Give Up!

1 know interview questions can be overwhelming, but that's part of what the interviewer is testing. Do you
rise to a challenge, or do you shrink back in fear? It's important that you step up and eagerly meet a tricky
problem head-on. After all, remember that interviews are supposed to be hard. It shouldn't be a surprise
when you get a really tough problem.

For extra "points," show excitement about solving hard problems.

CrackingTheCgdinglnterview.com] 6th Edition 81

VI

The Offer and Beyond

Just when you thought you could sit back and relax after your interviews, now you're faced with the post-
interview stress: Should you accept the offer? Is it the right one? How do you decline an offer? What about
deadlines? We'll handle a few of these issues here and go into more details about how to evaluate an offer,
and how to negotiate it,

* Handling Offers and Rejection

Whether you're accepting an offer, declining an offer, or responding to a rejection, it matters what you do.

Offer Deadlines and Extensions

When companies extend an offer, there's almost always a deadline attached to it. Usually these deadlines
are one to four weeks out. Ifyou're still waiting to hear back from other companies, you can ask for an exten-
sion. Companies will usually try to accommodate this, if possible.

Declining an Offer

Even if you aren't interested in working for this company right now, you might be interested in working for it
in a few years, (Or, your contacts might one day move to a more exciting company.) It's in your best interest
to decline the offer on good terms and keep a tine of communication open.

When you decline an offer, provide a reason that Is non-offensive and inarguable. For example, if you were
declining a big company for a startup, you could explain that you feel a startup is the right choice for you
at this time. The big company can't suddenly "become" a startup, so they can't argue about your reasoning.

Handling Rejection

Getting rejected is unfortunate, but it doesn't mean that you're not a great engineer. Lots of great engineers
do poorly, either because they don't "test well" on these sort of interviewers, or they just had an "off" day.

Fortunately, most companies understand that these interviews aren't perfect and many good engineers get
rejected. For this reason, companies are often eager to re-interview previously rejected candidate. Some
companies will even reach out to old candidates or expedite their application because of their prior perfor-
mance.

When you do get the unfortunate call, use this as an opportunity to buifd a bridge to re-apply. Thank your
recruiter for his time, explain that you're disappointed but that you understand their position, and ask when
you can reapply to the company.

ioo Cracking the Coding Interview, 6th Edition

VIl The Offer and Beyond

You can also ask for feedback from the recruiter. In most cases, the big tech companies won't offer feed-
back, but there are some companies that will. It doesn't hurt to ask a question like, "Is there anything you'd
suggest | work on for next time?"

e Evaluating the Offer

Congratulations! You got an offer! And—if you're lucky—you may have even gotten multiple offers. Your
recruiter's job is now to do everything he can to encourage you to accept it. How do you know if the
company is the right fit for you? We'll go through a few things you should consider in evaluating an offer.

The Financial Package

Perhaps the biggest mistake that candidates make in evaluating an offer is looking too much at their salary.
Candidates often look so much at this one number that they wind up accepting the offer that is worse finan-
cially, Salary is just one part of your financial compensation. You should also look at:

» Signing Bonus, Relocation, and Other One Time Perks: Many companies offer a signing bonus and/or relo-
cation. When comparing offers, it's wise to amortize this cash over three years (or however long you
expect to stay).

» Cost ofLiving Difference: Taxes and other cost of living differences can make a big difference in your take-
home pay. Silicon Valley, for example, is 30+% more expensive than Seattle.

» Annual Bonus: Annual bonuses at tech companies can range from anywhere from 3% to 30%. Your
recruiter might reveal the average annual bonus, but if not, check with friends at the company.

» Stock Options and Grants: Equity compensation can form another big part of your annual compensation.
Like signing bonuses, stock compensation between companies can be compared by amortizing it over
three years and then lumping that value into salary.

Remember, though, that what you learn and how a company advances your career often makes far more of
a difference to your long term finances than the salary. Think very carefully about how much emphasis you
really want to put on money right now.

Career Development

As thrilled as you may be to receive this offer, odds are, in a few years, you'll start thinking about inter-
viewing again. Therefore, it's important that you think right now about how this offer would impact your
career path. This means considering the following questions:

* How good does the company's name look on my resume?

* How much will I learn? Will | learn relevant things?

* What is the promotion plan? How do the careers of developers progress?

» IfI want to move into management, does this company offer a realistic plan?
* Is the company or team growing?

» If | do want to leave the company, is it situated near other companies I'm interested in, or will | need to
move?

The final point is extremely important and usually overlooked. If you only have a few other companies to
pick from in your city, your career options will be more restricted. Fewer options means that you're less likely
to discover really great opportunities.

CrackingTheCodinglInterview.com [6th Edition 83

VIl (The Offer and Beyond

Company Stability
All else being equal, of course stability is a good thing. No one wants to be fired or laid off.
However, all else isn't actually equal. The more stable companies are also often growing more slowly.

How much emphasis you should put on company stability really depends on you and your values. For some
candidates, stability should not be a large factor. Can you fairly quickly find a new job? If so, it might be
better to take the rapidly growing company, even if it's unstable? If you have work visa restrictions or just
aren't confident in your ability to find something new, stability might be more important.

The Happiness Factor

Last but not least, you should of course consider how happy you will be. Any of the following factors may
impact that:

» TTe Product; Many people look heavily at what product they are building, and of course this matters a bit.
However, for most engineers, there are more important factor, such as who you work with.

* Manager and Teamm ates: When people say that they love, or hate, their job, it's often because of their
teammates and their manager. Have you met them? Did you enjoy talking with them?

» Company Culture: Culture is tied to everything from how decisions get made, to the social atmosphere,
to how the company is organized. Ask your future teammates how they would describe the culture.

» Hours: Ask future teammates about how long they typically work, and figure out if that meshes with your
lifestyle. Remember, though, that hours before major deadlines are typically much longer.

Additionally, note that if you are given the opportunity to switch teams easily (like you are at Google and
Facebook), you'll have an opportunity to find a team and product that matches you well.

* Negotiation

Years ago, | signed up for a negotiations class. On the first day, the instructor asked us to imagine a scenario
where we wanted to buy a car. Dealership A sells the car for a fixed $20,000—no negotiating. Dealership B
allows us to negotiate. How much would the car have to be (after negotiating) for us to goto Dealership B?
(Quick! Answer this for yourself!)

On average, the class said that the car would have to be $750 cheaper. In other words, students were willing
to pay $750 just to avoid having to negotiate for an hour or so. Not surprisingly, in a class poll, most of these
students also said they didn't negotiate their job offer. They just accepted whatever the company gave
them.

Many of us can probably sympathize with this position. Negotiation isn't fun for most of us. But still, the
financial benefits of negotiation are usually worth it.

Do yourself a favor. Negotiate. Here are some tips to get you started.

L JustDo lt. Yes, | know it's scary; (almost) no one likes negotiating. But it's so, so worth it. Recruiters will not
revoke an offer because you negotiated, so you have little to lose. This is especially true if the offer is from
a larger company. You probably won't be negotiating with your future teammates.

2. Have a Viable Alternative. Fundamentally, recruiters negotiate with you because they're concerned you
may not join the company otherwise. If you have alternative options, that will make their concern much
more real.

3. Have a Specific "Ask": It's more effective to ask for an additional $7000 in salary than to just ask for "more."

£4 86 Crackingthe Codinginterview, 6th Edition

VIII [The Offer and Beyond

After all, if you just ask for more, the recruiter could throw in another $1000 and technically have satis-
fied your wishes.

4. Overshoot: In negotiations, people usually don't agree to whatever you demand. It's a back and forth
conversation. Ask for a bit more than you're reaily hoping to get, since the company will probably meet
you in the middle.

5. Think Beyond Salary: Companies are often more willing to negotiate on non-salary components, since
boosting your salary too much could mean that they're paying you more than your peers. Consider
asking for more equity or a bigger signing bonus. Alternatively, you may be able to ask for your reloca-
tion benefits in cash, instead of having the company pay directly for the moving fees. This is a great
avenue for many college students, whose actual moving expenses are fairly cheap,

6. Use YourBest Medium: Many people will advise you to only negotiate over the phone. To a certain extent,
they're right; it is better to negotiate over the phone. However, ifyou don't feel comfortable on a phone
negotiation, do it via email. It's more important that you attempt to negotiate than that you do it via a
specific medium.

Additionally, if you're negotiating with a big company, you should know that they often have "levels" for
employees, where all employees at a particular level are paid around the same amount. Microsoft has a
particularly well-defined system for this. You can negotiate within the salary range for your level, but going
beyond that requires bumping up a level. If you're looking for a big bump, you'll need to convince the
recruiter and your future team that your experience matches this higher level—a difficult, but feasible,
thing to do.

¢ On the Job

Navigating your career path doesn't end at the interview. In fact, it's just getting started. Once you actually
join a company, you need to start thinking about your career path. Where will you go from here, and how
wilt you get there?

Set a Timeline

It's a common story: you join a company, and you're psyched. Everything is great. Five years later, you're still
there. And it's then that you realize that these last three years didn't add much to your skill set or to your
resume. Why didn't you just leave after two years?

When you're enjoying your job, it's very easy to get wrapped up in itand not realize that your career is not
advancing. This is why you should outline your career path before starting a new job. Where do you want
to be in ten years? And what are the steps necessary to get there? In addition, each year, think about what
the next year of experience will bring you and how your career or your skill set advanced in the last year.

By outlining your path in advance and checking in on it regularly, you can avoid falling into this compla-
cency trap.

Build 5trong Relationships

When you want to move on to something new, your network will be critical. After all, applying online is
tricky; a personal referral is much better, and your ability to do so hinges on your network.

At work, establish strong relationships with your manager and teammates. When employees leave, keep in
touch with them. Just a friendly note a few weeks after their departure will help to bridge that connection
from a work acquaintance to a personal acquaintance.

CrackirgTheCodinginterview.com 16th Edition BS

VIII (The Offer and Beyond

This same approach applies to your persona/ life. Your friends, and your friends of friends, are valuable
connections. Be open to helping others, and they'll be more likely to help you.

Ask for What You Want

While some managers may really try to grow your career, others will take a more hands-off approach. It's up
to you to pursue the challenges that are right for your career.

Be (reasonably) frank about your goals with your manager. If you want to take on more back-end coding
projects, say so. If you'd like to explore more leadership opportunities, discuss how you might be able to
do so.

You need to be your best advocate, so that you can achieve goals according to your timeline.

Keep Interviewing

Set a goal of interviewing at least once a year, even ifyou aren't actively looking for a new job. This will keep
your interview skills fresh, and also keep you in tune with what sorts of opportunities (and salaries) are out
there.

If you get an offer, you don't have to take it. It will still build a connection with that company in case you
want to join at a later date.

86 Cracking the Coding interview, 6th Edition

Interview Questions

IX

Join us at www.CrackingTheCodinginterview.com to download the complete solutions, contribute or view
solutions in other programming languages, discuss problems from this book with other readers, ask questions,
report issues, view this book's errata, and seek additional advice.

http://www.CrackingTheCodinglnterview.com

Arrays and Strings

Hpefully, all readers of this book are familiar with arrays and strings, so we won't bore you with such
etails. Instead, we'll focus on some of the more common techniques and issues with these data struc-
tures.

Please note that array questions and string questions are often interchangeable. That is, a question that this
book states using an array may be asked instead as a string question, and vice versa,

¢ Hash Tables

A hash table is a data structure that maps keys to values for highly efficient lookup. There are a number of
ways of implementing this. Here, we will describe a simple but common implementation.

In this simple implementation, we use an array of linked lists and a hash code function. To insert a key
(which might be a string or essentially any other data type) and value, we do the following:

1. First, compute the key's hash code, which will usually be an int or long. Note that two different keys
could have the same hash code, as there may be an infinite number of keys and a finite number of ints.

2. Then, map the hash code to an index in the array. This could be done with something like hash (key)
% array_length.Two different hash codes could, of course, map to the same index.

3. At this index, there is a linked list of keys and values. Store the key and value in this index. We must use a
linked list because of collisions: you could have two different keys with the same hash code, or two different
hash codes that map to the same index.

To retrieve the value pair by its key, you repeat this process. Compute the hash code from the key, and then
compute the index from the hash code. Then, search through the linked list for the value with this key.

If the number of collisions is very high, the worst case runtime is 0(N), where N is the number of keys.
However, we generally assume a good implementation that keeps collisions to a minimum, in which case
the lookup time is 0(1).

“hi”—»10320 ——
“abc))_>980_..-——"‘>

“aa”—897~—___|

“qs?—»897———| 2 | aa | gs

0 » hi » abc

Y

pl

¢rplu_.>63__’———* 3

as Cracking the Coding Interview, 6th Edition

Chapter 1 | Arrays and Strings

Alternatively, we can implement the hash table with a balanced binary search tree.This gives usan0(log N)
lookup time.The advantage of this is potentially using less space, since we no longer allocate a large array. We
can also iterate through the keys in order, which can be useful sometimes.

* ArrayUst& Resizable Arrays

In some languages, arrays {often called lists in this case) are automatically resizable. The array or list will
grow as you append items. In other languages, like Java, arrays are fixed length. The size is defined when
you create the array.

When you need an array-like data structure that offers dynamic resizing, you would usually use an ArrayList.
An ArrayListisan array that resizes itself as needed while still providing 0(1) access. A typical implementa-
tion is that when the array is full, the array doubles in size. Each doubling takes 0(n) time, but happens so
rarely that its amortized insertion time is still 0(1),

1 ArraylList<String> merge(5tring[] words, Stringf] more) {

2 ArrayList<String> sentence = new ArraylList<String>();

3 for (String w : words) sentence. add(w);

4 for (String w : more) sentence.add(w):

5 return sentence;

6 >

This is an essential data structure for interviews. Be sure you are comfortable with dynamically resizable
arrays/lists in whatever language you will be working with. Note that the name of the data structure as well
as the "resizing factor" (which is 2 in Java) can vary.

Why is the amortized insertion runtime 0(1)?

Suppose you have an array of size N, We can work backwards to compute how many elements we copied
at each capacity increase. Observe that when we increase the array to K elements, the array was previously
halfthat size. Therefore, we needed to copy Vi elements.

final capacity increase : n/2 elements to copy

previous capacity increase: n/4 elements to copy

previous capacity increase: n/8 elements to copy

previous capacity increase: n/16 elements to copy

second capacity increase : 2 elements to copy
first capacity increase 1 element to copy
Therefore, the total number of copies to insert N elements is roughly /i + /Ja + % + .., + 2 +

1, which is just less than N,

I If the sum of this series isn't obvious to you, imagine this: Suppose you have a kilometer-long
walk to the store. You walk 0,5 kilometers, and then 0.25 kilometers, and then 0.125 kilometers,
and so on. You will never exceed one kilometer (although you'll get very close to it).

Therefore, inserting N elements takes O(N) work total. Each insertion is 0(1) on average, even though
some insertions take 0 (N) time in the worst case.

e StringBuilder

Imagine you were concatenating a list of strings, as shown below. What would the running time of this code
be? For simplicity, assume that the strings are all the same length (call this x) and that there are n strings.

CrackingTheCodinginterview.com j 6th Edition 91

Chapter! [Arrays and Strings

1 String joinWords(String[) words) {
2 String sentence =

3 for (String w : words) {

4 sentence = sentence + Wwj

5 }

6 return sentence;

1 >

On each concatenation, a new copy of the string is created, and the two strings are copied over, character
by character. The first iteration requires us to copy x characters, The second iteration requires copying 2x
characters. The third iteration requires 3x, and so on. The total time therefore isO(x + 2x + ... + nx).
This reduces toO(xn?),

Why is it 0(xn?)? Because 1 + 2 + ... + nequalsn(n+l)/2,or0(n?)-

StringBuildercan help you avoid this problem. StringBuilder simply creates a resizable array of all
the strings, copying them back to a string only when necessary.

1 String joinWords (String[] words) {

2 StringBuilder sentence = new StringBuilder();
3 for (String w : words) {

4 sentence. append (w) ;

5 }

6 return sentence.toString0;

T >
A good exercise to practice strings, arrays, and general data structures is to implement your own version of
StringBuilder, HashTableand ArraylList.

Additional Reading: Hash Table Collision Resolution (pg 636), Rabin-Karp Substring Search (pg 636).

Interview Questions

1.1 Is Unique: Implement an algorithm to determine if a string has all unique characters. What if you
cannot use additional data structures?

Hints: #44, #117, #132

1.2 Check Permutation: Given two strings, write a method to decide if one is a permutation of the
other.

Hints: ft, #84, #122, #131

1.3 URLify: Write a method to replace all spaces in a string with '%20'. You may assume that the string
has sufficient space at the end to hold the additional characters, and that you are given the "true"
length of the string. (Note: If implementing in Java, please use a character array so that you can
perform this operation in place.)

EXAMPLE
Input: "Mr 3ohn Smith 13
Output: "Mr%2030hn%20Smith"

Hints: #53,0118

90 Cracking the Coding Interview, 6th Edition

1.4

1.5

1.6

1.7

1.8

1.9

Chapter 1 | Arrays and Strings

Palindrome Permutation: Given a string, write a function to check if it is a permutation of a palin-
drome. A palindrome is a word or phrase that is the same forwards and backwards. A permutation
is a rearrangement of letters. The palindrome does not need to be limited to just dictionary words.
EXAMPLE

Input: Tact Coa

Qutput: True (permutations: “taco cat”, “atco eta”, etc.)

Hints: #106, h0134, § 136

One Away: There are three types of edits that can be performed on strings: insert a character,
remove a character, or replace a character. Given two strings, write a function to check if they are
one edit (or zero edits) away.

EXAMPLE

pale, pie -> true

pales, pale -> true

pale, bale -> true

pale, bake -> false

Hints: #23, #97, it 130

String Compression: Implement a method to perform basic string compression using the counts
of repeated characters. For example, the string aabcccccaaa would become a2blc5a3, If the
"compressed" string would not become smaller than the original string, your method should return
the original string. You can assume the string has only uppercase and lowercase letters (a - z).
Hints: #92, if 110

- P9 201
Rotate Matrix: Given an image represented by an NxN matrix, where each pixel in the image is 4
bytes, write a method to rotate the image by 90 degrees. Can you do this in place?

Hints: «51,0100

Zero Matrix: Write an algorithm such that if an element in an MxN matrix is 0, its entire row and
column are set to 0.

Hints: #17, #74, #102

String Rotation; Assume you have a method isSubstringwhich checks ifone word is a substring
of another. Given two strings, si and s2, write code to check if s2 is a rotation of si using only one
call to isSubstring [e.g.,, "waterbottle"is a rotation oP'erbottlewat"),

Hints: #34, #88#W4
p'j 206

Additional Questions: Object-Oriented Design (#7.12), Recursion (#8.3), Sorting and Searching (#10.9), C++
(#12.11), Moderate Problems (#16.8, #16.17, #16,22), Hard Problems (#17.4, #17.7, #17.13, #17.22, #17,26).

Hints start on page 653.

CrackingTheCodinginterview.com j 6th Edition 91

Linked Lists

Alinked list is a data structure that represents a sequence of nodes. In a singly linked list, each node
points to the next node in the linked list. A doubly linked list gives each node pointers to both the next
node and the previous node.

The following diagram depicts a doubly linked list:

Unlike an array, a linked list does not provide constant time access to a particular "index" within the list.
This means that ifyou'd like to find the Kth element in the list, you will need to iterate through K elements.

The benefit of a linked list is that you can add and remove items from the beginning of the list in constant
time. For specific applications, this can be useful.

> Creating a Linked List

The code below implements a very basic singly linked list.

1 class Node {

2 Node next = null;

3 int data;

4

5 public Node(int d) {

6 data = d;

7 }

8

9 void appendToTail (int d) {
16 Node end = new Node (d);
11 Node n = this;

12 while {n.next 1= null) {
13 n = n.next;

14 >

15 n.next = end;

16 >

17 >

In this implementation, we don't have a LinkedList data structure. We access the linked list through a
reference to the head Node of the linked list. When you implement the linked list this way, you need to be
a bit careful. What if multiple objects need a reference to the linked list, and then the head of the linked list
changes? Some objects might still be pointing to the old head.

oo
Cracking the Coding Interview, 6th Edition

Chapter105|Linked Lists

We could, if we chose, implement a LinkedList class that wraps the Node class. This would essentially
just have a single member variable: the head Node.This would largely resolve the earlier issue.

Remember that when you're discussing a linked list in an interview, you must understand whether it is a
singly linked list or a doubly linked list.

* Deleting a Node from a Singly Linked List

Deleting a node from a linked list is fairly straightforward. Given a node n, we find the previous node prev
and set prev. next equal to n. next. If the list is doubly linked, we must also update n. next to set
n.next. prev equal to n. prev. The important things to remember are (1) to check for the null pointer
and (2) to update the head or tail pointer as necessary.

Additionally, if you implement this code in C, C++ or another language that requires the developer to do
memory management, you should consider if the removed node should be deallocated.

1 Mode deleteNode(Node head, int d) {

2 Node n = head;

3

4 if (n.data == d) {

5 return head.next; /* moved head */
6 >

7

8 while (n.next != null) {

9 if (n.next.data == d) {

10 n.next = n.next.next;

11 return head; /* head didn't change */
12 }

13 n = n.next;

14 }

15 return head;

16 >

¢ The"Runner"Technique

The "runner" (or second pointer) technique is used in many linked list problems. The runner technique
means that you iterate through the linked list with two pointers simultaneously, with one ahead of the
other. The "fast" node might be ahead by a fixed amount, or it might be hopping multiple nodes for each
one node that the "slow" node iterates through.

For example, suppose you had a linked list a;->a,->.. .->a,->b4->b,;->.. .->b, and you wanted to
rearrange it into a;->b4->a,->bz->. . . - >32->b,. You do not know the length of the linked list (but you
do know that the length is an even number).

You could have one pointer pi (the fast pointer) move every two elements for every one move that p2
makes. When pi hits the end of the linked list, p2 will be at the midpoint. Then, move pi back to the front
and begin "weaving" the elements. On each iteration, p2 selects an element and inserts it after pi.

¢ Recursive Problems

A number of linked list problems rely on recursion. If you're having trouble solving a linked list problem,
you should explore if a recursive approach will work. We won't go into depth on recursion here, since a later
chapter is devoted to it.

CrackingTheCodinglntet view.com | 6th Edition 93

Chapter 2 | Linked Lists

However, you should remember that recursive algorithms take at least 0(n) space, where n is the depth
of the recursive call. All recursive algorithms can be implemented iteratively, although they may be much

more complex.

Interview Questions

21

2.2

23

2.4

94

Remove Dups: Write code to remove duplicates from an unsorted linked list.
FOLLOW UP
How would you solve this problem if a temporary buffer is not allowed?

Hints: #9, #40

Return Kth to Last: Implement an algorithm to find the kth to last element of a singly linked list.

Hints: #8, #25, #41, #67, #126

Delete Middle Node: Implement an algorithm to delete a node in the middle (i.e., any node but
the first and last node, not necessarily the exact middle) of a singly linked list, given only access to
that node.

EXAMPLE
Input: the node c from the linked list a - >b- >c - >d - >e- >f
Result: nothing is returned, but the new linked list looks like a->b->d->e->f

Hints: #72

Partition: Write code to partition a linked listaround a value x, such that all nodes less than x come
before all nodes greater than or equal to x. Ifxis contained within the list, the values of x only need
to be after the elements less than x (see below). The partition element x can appear anywhere in the
"right partition"; it does not need to appear between the left and right partitions.

EXAMPLE

Input: 3 >5->8 ->5 ->10 -> 2 -> 1 [partition = 5]
Output: 3 >1>2->10 ->5 > 5 > 38
Hints: #3, #24

Cracking the Coding Interview, 6th Edition

2.5

2.6

2.7

2.8

Chapter 2 | Linked Lists

Sum Lists: You have two numbers represented by a linked list, where each node contains a single
digit. The digits are stored in reverse order, such that the Vs digit is at the head of the list. Write a
function that adds the two numbers and returns the sum as a linked list.

EXAMPLE

Input: (7-> 1 -> 6) + (5 -> 9 -> 2).Thatis,617 + 295.

Output: 2 -> 1 -> 9.Thatis, 912.

FOLLOW UP

Suppose the digits are stored in forward order. Repeat the above problem.

EXAMPLE

Input: (6 -> 1 -> 7) + (2 -> 9 -> 5).Thatis, 617 + 295,

Output:9 -> 1 -> 2,Thatis,912.

Hints: #7, #30, #71 #95, #109

Palindrome: Implement a function to check if a linked list is a palindrome.

Hints: #5, #13, #29, #61, #101
pg 216

Intersection; Given two (singly) linked lists, determine if the two lists intersect. Return the inter-
secting node. Note that the intersection is defined based on reference, not value. That is, if the kth
node of the first linked list is the exact same node (by reference) as the jth node of the second
linked list, then they are intersecting.

Hints: #20, #45, #55, #65, #76, #93, #1 1 1, #120, #129

Loop Detection: Given a circular linked list, implement an algorithm that returns the node at the
beginning of the loop.

DEFINITION

Circular linked list: A (corrupt) linked list in which a node's next pointer points to an earlier node, so
as to make a loop in the linked list.

EXAMPLE
Input: A->8->C->D->E-> C [the same C as earlier]
Output: C

Hints: #50, #69, #83, #90

Additional Questions: Trees and Graphs (#4,3), Object-Oriented Design (#7.12), System Design and Scal-
ability (#9.5), Moderate Problems (#16.25), Hard Problems (#17.12).

Hints start on page 653.

CrackingTheCodinglintet view.com | 6th Edition 93

Stacks and Queues

uestions on stacks and queues will be much easier to handle if you are comfortable with the ins and
outs of the data structure. The problems can be quite tricky, though. While some problems may be
slight modifications on the original data structure, others have much more complex challenges.

* Implementing a Stack

The stack data structure is precisely what it sounds like: a stack of data. In certain types of problems, it can
be favorable to store data in a stack rather than in an array.

A stack uses LIFO (last-in first-out) ordering. That is, as in a stack of dinner plates, the most recent item
added to the stack is the first item to be removed.

It uses the following operations:

* pop(): Remove the top item from the stack.

« push(item): Add an item to the top of the stack.

+ peek(): Return the top of the stack.

« isf£mpty(): Return true if and only if the stack is empty.

Unlike an array, a stack does not offer constant-time access to the ith item. However, it does allow constant-
time adds and removes, as it doesn't require shifting elements around.

We have provided simple sample code to implement a stack. Note that a stack can also be implemented
using a linked list, ifitems were added and removed from the same side.

1 public class MyStack<T> {

2 private static class StackNode<T> {
3 private T data;

4 private stackNode<T> next;

5

6 public StackNode (T data) {

7 this.data = data;

8 >

9 }

10

11 private StackNode<T> top;

12

13 public T pop() {

14 if (top null) throw new EmptyStackException()
IB T item = top.data;

foo Cracking the Coding Interview, 6th Edition

Chapter 3 j Stacks and Queues

16 top = top.next:

17 return item;

18 >

19

20 public void push(T item) {

21 StackNode<T> t = new StackNode<T> (item)
22 t.next = top;

23 top = t;

24 >

25

26 public T peek() {

217 if (top == null) throw new EmptyStackExceptionQlI
28 return top.data;

29 >

30

31 public boolean isEmptyQ {

32 return top == null;

33 >

34}

One case where stacks are often useful is in certain recursive algorithms. Sometimes you need to push
temporary data onto a stack as you recurse, but then remove them as you backtrack (for example, because
the recursive check failed). A stack offers an intuitive way to do this.

A stack can also be used to implement a recursive algorithm iteratively. (This is a good exercise! Take a
simple recursive algorithm and implement it iteratively.)

¢ Implementing a Queue

A queue implements FIFO (first-in first-out) ordering. As in a line or queue at a ticket stand, items are
removed from the data structure in the same order that they are added.

It uses the operations:

* add(item): Add an item to the end of the list.

*+ remove(): Remove the first item in the list.

* peek(): Return the top of the queue.

* isEmpty(): Return true if and only if the queue is empty.

A queue can also be implemented with a linked list. In fact, they are essentially the same thing, as long as
items are added and removed from opposite sides,
| public class MyQueue<T> {

2 private static class QueueNode<T> {
private T data;

4 private QueueNode<T> next;

5

6 public QueueNode (T data) {

this.data = data;

8 }

9 }

10

11 private QueueNode<T> first:
12 private QueueNode<T> last;
13

14 public void add(T item) {

CrackingTheCodinglinterview.com i 6th Edition 97

Chapter 3 j Stacks and Queues

15 QueueNode<T> t = new QueueNode<T> (item)
16 if (last !'= null) {

17 last. next = t;

18)

19 last = t.

20 if (first == null) (

21 first = last.

22 }

23)

24

25 public T removeQ {

26 if (first == null) throw new NoSuchElementException();
21 T data = first.data;

28 first = first. next;

29 if (first == null) {

30 last = null;

31 }

32 return data;

33 }

34

35 public T peek() {

36 if (first == null) throw new NoSuchElementException();
37 return first.data;

38 >

39

40 public boolean isEmptyQ {

41 return first == null;

42 }

43 >

it is especially easy to mess up the updating of the first and last nodes in a queue. 8e sure to double check
this.

One place where queues are often used is in breadth-first search or in implementing a cache.

In breadth-first search, for example, we used a queue to store a list of the nodes that we need to process.
Each time we process a node, we add its adjacent nodes to the back of the queue. This allows us to process
nodes in the order in which they are viewed.

Interview Questions

3.1 Three in One: Describe how you could use a single array to implement three stacks.

Hints: #2, #12, #38, #58

3.2 Stack Min: How would you design a stack which, in addition to push and pop, has a function min
which returns the minimum eiement? Push, pop and min should ail operate in 0(1) time.

Hints: #27, #59, #78

98 Cracking the Coding Interview, 6th Edition

3.3

3.4

3.5

3.6

Chapter 3 | Stacks and Queues

Stack of Plates: Imagine a (literal) stack of plates. If the stack gets too high, it might topple.
Therefore, in real life, we would likely start a new stack when the previous stack exceeds some
threshold. Implement a data structure SetOfStacks that mimics this. SetOfStacks should be
composed of several stacks and should create a new stack once the previous one exceeds capacity.
SetOfStacks .push() and SetOfStacks .pop() should behave identically to a single stack
(that is, pop() should return the same values as it would if there were just a single stack).

FOLLOW UP
Implement a function popAt(int index) which performsa pop operation on a specific sub-stack.
Hints: #64, #81

Queue via Stacks: Implement a MyQueue class which implements a queue using two stacks.

Hints: #98, #114
pg 236

Sort Stack: Write a program to sort a stack such that the smallest items are on the top. You can use
an additional temporary stack, but you may not copy the elements into any other data structure
(such as an array). The stack supports the following operations: push, pop, peek, and is Empty.

Hints: #15, »32,043

Animal SheltenAn animal shelter, which holds only dogs and cats, operates on a strictly "firstin, first
out" basis. People must adopt either the "oldest" (based on arrival time) of all animals at the shelter,
or they can select whether they would prefer a dog or a cat (and will receive the oldest animal of
that type). They cannot select which specific animal they would like. Create the data structures to
maintain this system and implement operations such as enqueue, dequeueAny, dequeueDog,
and dequeueCat.You may use the built-in LinkedList data structure.

Hints: #22, #56, #63

Additional Questions: Linked Lists (#2.6), Moderate Problems (#16.26), Hard Problems (#17.9).

Hints start on page 653.

CrackingTheCodmginterview.com j 6th Edition 99

Trees and Graphs

ny interviewees find tree and graph problems to be some of the trickiest. Searching a tree is more
Momplicated than searching in a linearly organized data structure such as an array or linked list. Addi-
tionally, the worst case and average case time may vary wildly, and we must evaluate both aspects of any
algorithm. Fluency in implementing a tree or graph from scratch will prove essential.

Because most people are more familiar with trees than graphs (and they're a bit simpler), we'll discuss trees
first. This is a bit out of order though, as a tree is actually a type of graph.

I Note: Some of the terms in this chapter can vary slightly across different textbooks and other
sources. If you're used to a different definition, that's fine. Make sure to clear up any ambiguity
with your interviewer.

* Types of Trees

A nice way to understand a tree is with a recursive explanation, A tree is a data structure composed of
nodes,

* Each tree has a root node, (Actually, this isn't strictly necessary in graph theory, but it's usually how we
use trees in programming, and especially programming interviews.)

* The root node has 2ero or more child nodes.
* Each child node has zero or more child nodes, and so on.

The tree cannot contain cycles. The nodes mayor may not be in a particular order, they could have any data
type as values, and they may or may not have links back to their parent nodes.

A very simple class definition for Node is:

1 class Node {

2 public String name;

3 public Node[] children;
4}

You might also have a Tree class to wrap this node. For the purposes of interview questions, we typically
do not use a Tree class. You can if you feel it makes your code simpler or better, but it rarely does.

1 class Tree {
2 public Node root;

3 >

foo Cracking the Coding Interview, 6th Edition

Chapter 4 [Trees and Graphs

Tree and graph questions are rife with ambiguous details and incorrect assumptions. Be sure to watch out
for the following issues and seek clarification when necessary.

Trees vs. Binary Trees

A binary tree is a tree in which each node has up to two children. Not ail trees are binary trees. For example,
this tree is not a binary tree. You could call it a ternary tree.

(000
@& O @

There are occasions when you might have a tree that is not a binary tree. For example, suppose you were
using a tree to represent a bunch of phone numbers. In this case, you might use a 10-ary tree, with each
node having up to 10 children (one for each digit).

A node is called a"leaf" node if it has no children.

Binary Tree vs. Binary Search Tree

A binary search tree is a binary tree in which every node fits a specific ordering property: all left
descendents <= n < all right descendents. This must be true for each node n.

I The definition of a binary search tree can vary slightly with respect to equality. Under some defi-
nitions, the tree cannot have duplicate values. In others, the duplicate values will be on the right
or can be on either side. All are valid definitions, but you should clarify this with your interviewer.

Note that this inequality must be true for all of a node's descendents, not just its immediate children. The
following tree on the left below is a binary search tree.The tree on the right is not, since 12 is to the left of 8.

A binary search tree. Not a binary search tree.

(8) (8)
OO OXO
& © @ & @ @

When given a tree question, many candidates assume the interviewer means a binary search tree, 8e sure
to ask. A binary search tree imposes the condition that, for each node, its left descendents are less than or
equal to the current node, which is tess than the right descendents.

Balanced vs. Unbalanced

While many trees are balanced, not all are. Ask your interviewer for clarification here. Note that balancing a
tree does not mean the left and right subtrees are exactly the same size (like you see under "perfect binary
trees" in the following diagram).

CrackingTheCodinginterview.com 16th Edition 101

Chapter 4 | Trees and Graphs

One way to think about it is that a "balanced" tree really means something more like "not terribly imbal-
anced."It's balanced enough to ensure O(log n) times for insert and find, but it's not necessarily as
balanced as it could be.

Two common types of balanced trees are red-black trees (pg 639) and AVL trees (pg 637). These are
discussed in more detail in the Advanced Topics section.

Complete Binary Trees

A complete binary tree is a binary tree in which every level of the tree is fully filled, except for perhaps the
last level. To the extent that the last level is filled, it is filled left to right,

not a complete binary tree a complete binary tree

Full Binary Trees

Afull binary tree is a binary tree in which every node has either zero or two children. That is, no nodes have

only one child.

not a full binary tree a full binary tree
Y ~
il0) il1O|
C/\./\ P P e 6
S T20) (7) T20)
Woow 5 e N
12aj (1) v @)
NS @ s

Perfect Binary Trees

A perfect binary tree is one that is both full and complete. All leaf nodes will be at the same level, and this

Note that perfect trees are rare in interviews and in real life, as a perfect tree must have exactly 2% - 1 nodes
{where k is the number of levels). In an interview, do not assume a binary tree is perfect.

level has the maximum number of nodes.

102 Cracking the Coding Interview, 6th Edition

Chapter 4 | Trees and Graphs

e Binary Tree Traversal

Prior to your interview, you should be comfortable implementing in-order, post-order, and pre-order
traversal. The most common ofthese is in-order traversal.

In-Order Traversal

In-order traversal means to "visit" (often, print) the left branch, then the current node, and finally, the right
branch.

i void inOrderTraversal (TreeNode node) {
2 if (node != null) {

3 inOrderTraversal (node. left) ;

4 visit(node);

5 inOrderTraversal (node. right);

6

7

When performed on a binary search tree, it visits the nodes in ascending order (hence the name "in-order").

Pre-Order Traversal

Pre-order traversal visits the current node before its child nodes (hence the name "pre-order").

void p(h%(gédqgmviq5sai(TreeNode node) {

b
3 visit(node)

4 preOrderTraversal (node, left) ;
5 preOrderTraversal (node. right) ;
6
7

In a pre-order traversal, the root is always the first node visited.

Post-Order Traversal

Post-order traversal visits the current node after its child nodes (hence the name "post-order").
3 voi¢d pesd@rderfraygrspl(TreeNocte node) (

postOrderTraversal (node. left) ;
postOrderTraversal (node. right) ;
visit(node)

~N o o~
—-—

In a post-order traversal, the root is always the last node visited.

e Binary Heaps (Min-Heaps and Max-Heaps)

We'll just discuss min-heaps here. Max-heaps are essentially equivalent, but the elements are in descending
order rather than ascending order,

A min-heap is a complete binary tree (that is, totally filled other than the rightmost elements on the last
level) where each node is smaller than its children. The root, therefore, is the minimum element in the tree.

CrackingTheCodinglInterview.com | 6th Edition 103

Chapter 4 | Trees and Graphs

()
(s0) (7)

OMDIO

We have two key operations on a min-heap: insert and extract_min.

Insert

When we insert into a min-heap, we always start by inserting the element at the bottom. We insert at the
rightmost spot so as to maintain the complete tree property.

Then, we "fix" the tree by swapping the new element with its parent, until we find an appropriate spot for
the element. We essentially bubble up the minimum element.

Step 1: Insert 2 Step 2: Swap 2 and 7 Step 3: Swap 2 and 4

This takes O(log n) time, where n is the number of nodes in the heap.

Extract Minimum Element

Finding the minimum element of a min-heap is easy: it's always at the top. The trickier part is how to remove
it. {In fact, this isn't that tricky.)

First, we remove the minimum element and swap it with the last element in the heap (the bottommost,
rightmost element). Then, we bubble down this element, swapping it with one of its children until the min-

heap property is restored.

Do we swap it with the left child or the right child? That depends on their values. There's no inherent
ordering between the left and right element, but you'll need to take the smaller one in order to maintain

the min-heap ordering.

Step 1: Replace min with 80 Step 2: Swap 23 and 80 Step 3: Swap 32 and 80

(80) () ()
(o) () (o) (80 (o) (32)
@) (@) (9 OIODI, () (@) ¢

80

This algorithm will also take 0(log n) time.

102 Cracking the Coding Interview, 6th Edition

Chapter4 | Trees and Graphs

* Tries (Prefix Trees)

A trie (sometimes called a prefix tree) is a funny data structure. It comes up a lot in interview questions, but
algorithm textbooks don't spend much time on this data structure.

A trie is a variant of an n-arytree in which characters are stored at each node. Each path down the tree may
represent a word.

The * nodes (sometimes called "null nodes") are often used to indicate complete words. For example, the
fact that there is a * node under MANY indicates that MANY is a complete word.The existence of the MA path
indicates there are words that start with MA.

*

The actual implementation of these nodes might be a special type of child (such as a
TerminatingTrieNode, which inherits from TrieNode). Or, we could use just a boolean flag
terminates within the "parent” node.

A node in a the could have anywhere from 1 through ALPHABET_SIZE + 1 children (or, O through
ALPHABET_SIZE if a boolean flag is used instead of a * node).

Very commonly, a trie is used to store the entire (English) language for quick prefix lookups. While a hash
table can quickly look up whether a string is a valid word, it cannot tell us ifa string is a prefix of any valid
words. A trie can do this very quickly.

I How quickly? A trie can check if a string is a valid prefix inO(K) time, where K is the length of the

string. This is actually the same runtime as a hash table will take. Although we often refer to hash

table lookups as being 0(1) time, this isn't entirely true. A hash table must read through all the
characters In the input, which takes 0(K) time in the case of a word lookup.

Many problems involving lists of valid words leverage a trie as an optimization. In situations when we search
through the tree on related prefixes repeatedly (e.g., looking up R, then MA, then MAN, then MANY), we might
pass around a reference to the current node in the tree. This will allow us to just check if Y is a child of MAN,
rather than starting from the root each time.

¢ Graphs

A tree is actually a type of graph, but not all graphs are trees. Simply put, a tree is a connected graph without
cycles.

A graph is simply a collection of nodes with edges between (some of) them.

*

Graphs can be either directed (like the following graph) or undirected. While directed edges are like a

CrackingTheCodinglInterview.com | 6th Edition 103

Chapter 4 | Trees and Graphs

one-way street, undirected edges are like a two-way street.

* The graph might consist of multiple isolated subgraphs. If there is a path between every pair of vertices,
it is called a "connected graph."

* The graph can also have cycles (or not). An "acyclic graph" is one without cycles.

Visually, you could draw a graph like this:
In terms of programming, there are two common ways to represent a graph.

Adjacency List

This is the most common way to represent a graph. Every vertex (or node] stores a list of adjacent vertices.
In an undirected graph, an edge like (a, b) would be stored twice: once in a's adjacent vertices and once
in b s adjacent vertices.

A simple class definition for a graph node could look essentially the same as a tree node.

class Graph {
public Node[] nodes;

public String name;

1

2

3

4

5 class Node {
6

7 public Node[] children;
a

>

The Graph class is used because, unlike in a tree, you can't necessarily reach all the nodes from a single node.

You don't necessarily need any additional classes to represent a graph. An array (or a hash table) of lists
(arrays, array lists, linked lists, etc.) can store the adjacency list. The graph above could be represented as:

6: 1
1. 2
2: 3
3: 2
4: 6
5. 4
6: S

This is a bit more compact, but it isn't quite as clean. We tend to use node classes unless there's a compelling
reason not to.

Adjacency Matrices

An adjacency matrix is an NxN boolean matrix (where N is the number of nodes), where a true value at
matrix[i][j] indicates an edge from node i to node j. (You can also use an integer matrix with Os and
1s.)

In an undirected graph, an adjacency matrix will be symmetric. In a directed graph, it will not (necessarily)
be.

102 Cracking the Coding Interview, 6th Edition

Chapter 4 | Trees and Graphs

o o ol 1]2]3
olol1]o0]o0
11o0lo0l1]o0
@—> 211000
3/0/0|1]0

The same graph algorithms that are used ori adjacency lists (breadth-first search, etc.) can be performed
with adjacency matrices, but they may be somewhat tess efficient. In the adjacency list representation, you
can easily iterate through the neighbors ofa node. In the adjacency matrix representation, you will need to
iterate through all the nodes to identify a node's neighbors.

e Graph Search

The two most common ways to search a graph are depth-first search and breadth-first search.

In depth-first search (DFS), we start at the root (or another arbitrarily selected node) and explore each
branch completely before moving on to the next branch. That is, we go deep first (hence the name depth-
first search) before we go wide.

In breadth-first search (BFS), we start at the root (or another arbitrarily selected node) and explore each
neighbor before going on to any of their children. That is, we go wide (hence breadth-first search) before
we go deep.

See the below depiction of a graph and its depth-first and breadth-first search (assuming neighbors are
iterated in numerical order).

Graph Depth-First Search Breadth-First Search
0 0 e] Node 0 1 Node 0

2 Node 1 2 Node 1

3 Node 3 3 Node 4

4 Node 2 4 Node 5
o o o 5 Node 4 5 Node 3

6 Node 5 6 Node 2

Breadth-first search and depth-first search tend to be used in different scenarios. DFS is often preferred if we
want to visit every node in the graph. Both will work just fine, but depth-first search is a bit simpler.

However, if we want to find the shortest path (orjust any path) between two nodes, 8FS is generally better.
Consider representing all the friendships in the entire worid in a graph and trying to find a path of friend-
ships between Ash and Vanessa.

In depth-first search, we could take a path like Ash -> Brian -> Carleton -> Davis -> Eric
-> Farah -> Gayle -> Harry -> lIsabella -> Dohn -> Kari... and then find ourselves very
far away. We could go through most of the world without realizing that, in fact, Vanessa is Ash's friend. We
will still eventually find the path, but it may take a long time. It also won't find us the shortest path.

In breadth-first search, we would stay close to Ash for as long as possible. We might iterate through many
of Ash's friends, but we wouldn't go to his more distant connections until absolutely necessary. If Vanessa
is Ash's friend, or his friend-of-a-friend, we'll find this out relatively quickly,

CrackingTheCodinglInterview.com | 6th Edition 103

Chapter 4 | Trees and Graphs

Depth-First Search (DFS)

In DFS, we visit a node a and then iterate through each of a's neighbors. When visiting a node b that is a
neighbor of a, we visit all of b's neighbors before going on to a's other neighbors. That is, a exhaustively
searches b's branch before any of its other neighbors.

Note that pre-order and other forms of tree traversal are a form of DFS. The key difference is that when
implementing this algorithm for a graph, we must check if the node has been visited. If we don't, we risk
getting stuck in an infinite loop.

The pseudocode below implements DFS.

1 void search(Node root) ({

2 if (root == null) return;

3 visit(root);

4 root.visited = true;

5 for each (Node n in root.adjacent) {

6 if (n.visited == false) {
search(n);

8 >

9 >

ia >

Breadth-First Search (BFS)

BFS is a bit less intuitive, and many interviewees struggle with the implementation unless they are already
familiar with it. The main tripping point is the (false) assumption that BFS is recursive. It's not. Instead, it
uses a queue.

In BFS, node a visits each of a's neighbors before visiting any of their neighbors. You can think of this as
searching level by level out from a. An iterative solution involving a queue usually works best,
void search(Node root) {

|

2 Queue queue = new Queue();

3 root.marked = true;

4 queue.enqueue(root); Il Add to the end of queue
5

6 while (lqueue.isEmptyO) {

7 Node r « queue.dequeue(); // Remove from the front of the queue
8 visit(r);

9 foreach (Node n in r.adjacent) {

10 if (n.marked == false) {

11 n.marked = true;

12 queue.enqueue(n);

13 >

14 }

15 >

16 >

If you are asked to implement BFS, the key thing to remember is the use of the queue. The rest of the algo-
rithm flows from this fact.

Bidirectional Search

Bidirectional search is used to find the shortest path between a source and destination node. It operates
by essentially running two simultaneous breadth-first searches, one from each node. When their searches
collide, we have found a path.

102 Cracking the Coding Interview, 6th Edition

Chapter 4 | Trees and Graphs

Breadth-First Search Bidirectional Search
Single search from s to t that Two searches (one from s and one from t) that
collides after four levels. collide after four levels total (two levels each).

2825020
30 %o

To see why this is faster, consider a graph where every node has at most k adjacent nodes and the shortest
path from node s to node t has length d.

* In traditional breadth-first search, we would search up to k nodes in the first "level" of the search. In the
second level, we would search up to k nodes for each of those first k nodes, so k* nodes total (thus far).
We would do this d times, so that's 0 (k%) nodes.

» In bidirectional search, we have two searches that collide after approximately Y2 levels (the midpoint
of the path).The search from s visits approximately k', as does the search from t. That's approximately
2 k%" or0(k®"), nodes total.

This might seem like a minor difference, but it's not It's huge. Recall that (k®/2)*(k'"") = k°.The bidirec-
tional search is actually faster by a factor of k"".

Put another way: if our system could only support searching "friend of friend" paths in breadth-first search,
it could now likely support "friend of friend of friend of friend" paths. We can support paths that are twice
as long.

Additional Reading: Topological Sort (pg 632), Di/kstra's Algorithm (pg 633), AVL Trees (pg 637), Red-
Black Trees (pg 639).

Interview Questions

4,1 Route Between Nodes: Given a directed graph, design an algorithm to find out whether there is a
route between two nodes.

Hints:

4,2 Minimal Tree: Given a sorted (increasing order) array with unique integer elements, write an algo-
rithm to create a binary search tree with minimal height.

Hints:/*19,473,0116

4.3 List of Depths: Given a binary tree, design an algorithm which creates a linked list of all the nodes
at each depth (e.g., ifyou have a tree with depth D, you'll have D linked lists).
Hints: #107, #123, #135

CrackingTheCodinglInterview.com | 6th Edition 103

Chapter 4 | Trees and Graphs

4.4

4.5

4.6

4.7

4.8

4.9

102

Check Balanced: Implement a function to check if a binary tree is balanced. For the purposes of
this question, a balanced tree is defined to be a tree such that the heights of the two subtrees of any
node never differ by more than one.

Hints: #21, #33, #49, #105, #124

Validate BST: Implement a function to check if a binary tree is a binary search tree.

Hints: #35, #57, #86, #113,#128

Successor: Write an algorithm to find the "next" node (i.e., in-order successor) of a given node in a
binary search tree. You may assume that each node has a link to its parent.

Hints: #79, #91

Build Order: You are given a list of projects and a list of dependencies (which is a list of pairs of
projects, where the second project is dependent on the first project). Ail of a project's dependencies
must be built before the project is. Find a build order that will allow the projects to be built. If there
is no valid build order, return an error.

EXAMPLE

Input:

projects: a, bj c, d, e, f

dependencies: (a, d), (f, b), (b, d), (f, a), (d, c)
Output: F, e, a, b, dj c

Hints: #26, #47, #60, #85, #125, #133

First Common Ancestor: Design an algorithm and write code to find the first common ancestor
of two nodes in a binary tree. Avoid storing additional nodes in a data structure. NOTE: This is not
necessarily a binary search tree.

Hints: #10, # 16, #28, #36, #46, #70, #80, #96

BST Sequences: A binary search tree was created by traversing through an array from left to right
and inserting each element. Given a binary search tree with distinct elements, print all possible
arrays that could have led to this tree.

EXAMPLE
Input:

Output: {2, 1, 34{2 3, 1}
Hints: #39, #48, #66, #82

Cracking the Coding Interview, 6th Edition

4.10

Chapter 4 | Trees and Graphs

Check Subtree: T1 and T2 are two very large binary trees, with T1 much bigger than T2. Create an
algorithm to determine if 12 is a subtree of T1.

AtreeT2 is a subtree of T1 if there exists a node n in T1 such that the subtree of n is identical to 12,
That is, if you cut off the tree at node n, the two trees would be identical.

Hints: H »31,

Random Node: You are implementing a binary tree class from scratch which, in addition to
insert, find, and delete, has a method getRandomNode() which returns a random node
from the tree. All nodes should be equally likely to be chosen. Design and implement an algorithm
for getRandomNode, and explain how you would implement the rest of the methods.

Hints: #42, #54, #62, #75, #89, #99, #112, #119

Paths with Sum: You are given a binary tree in which each node contains an integer value (which
might be positive or negative). Design an algorithm to count the number of paths that sum to a
given value. The path does not need to start or end at the root or a leaf, but it must go downwards
(traveling only from parent nodes to child nodes).

Hints: #6, # 14, #52, #68, #77, #87, #94, #103, #108, #115
pg272

Additional Questions: Recursion (#8.10), System Design and Scalability (#9.2, #9.3), Sorting and Searching
(#10.10), Hard Problems (#17.7, #17.12, #1713, #17.14, #1717, #17.20, #17.22, #17,25).

Hints start on page 653.

CrackingTheCodinginterview.com | 6thEdition 111

Bit Manipulation

it manipulation is used in a variety of problems. Sometimes, the question explicitly calls for bit manipu-
ation. Other times, it's simply a useful technique to optimize your code. You should be comfortable
doing bit manipulation by hand, as well as with code. Be careful; it's easy to make little mistakes.

e Bit Manipulation By Hand

Ifyou're rusty on bit manipulation, try the following exercises by hand. The items in the third column can be
solved manually or with "tricks" (described below). For simplicity, assume that these are four-bit numbers.

If you get confused, work them through as a base 10 number. You can then apply the same process to a
binary number. Remember that” indicatesanXOR, and ~isa NOT (negation).

0110 + 0010 0011 = 0101 0110 + 0110
0011 + 0010 0011 = 0011 0100 = 0011
0110 — 0011 1101 >> 2 1101 " (~1101)
1000 — 0110 1101 " 0101 1011 & (~0 << 2)

Solutions: ine 111000,1111,1100); line 2 [010t, 1001,1100); line 3(0011,0011,1111]; line 4 (0010,1000.1000).

The tricks in Column 3 are as follows:

1. 0110 + 0110 is equivalentto 0110 * 2, which is equivalent to shifting 0110 left by 1.

2. 0160 equals 4, and multiplying by 4 is just left shifting by 2. So we shift 0911 left by 2 to get 1100,

3. Think about this operation bit by bit. If you XOR a bit with its own negated value, you will always get 1.
Therefore, the solution to a"(-a) will be a sequence of 1s.

4. ~0 is a sequence of Is, so ~0 << 2 is 1s followed by two Os. ANDing that with another value will clear
the last two bits of the value.

If you didn't see these tricks immediately, think about them logically.

¢ Bit Facts and Tricks

The following expressions are useful in bit manipulation. Don't just memorize them, though; think deeply
about why each of these is true. We use"1s"and"0s"to indicate a sequence of 1s or Os, respectively.

x*0s = x X & 0s = 0 x | 0% = x
XA ls = X X & IS a X X | IS s IS
X" x =0 X6 X=X X1 X =«

oo
: Cracking the Coding Interview, 6th Edition

Chapter 5 j Bit Manipulation

To understand these expressions, recall that these operations occur bit-by-bit, with what's happening on
one bit never impacting the other bits. This means that if one of the above statements is true for a single bit,
then it's true for a sequence of bits.

* Two's Complement and Negative Numbers

Computers typically store integers in two's complement representation, A positive number is represented
as itselfwhile a negative number is represented as the two's complement of its absolute value (witha 1 inits
sign bit to indicate that a negative value).The two's complement ofanN-bit number (where N is the number
of bits used for the number.excluding the sign bit) is the complement of the number with respect to 2",

Let's look at the 4-bit integer -3 as an example. If it's a 4-bit number, we have one bit for the sign and three
bits for the value. We want the complement with respect to V, which is 8. The complement of 3 (the abso-
lute value of -3) with respect to 8 is 5. 5 in binary is 101. Therefore, -3 in binary as a 4-bit number is 1101,
with the first bit being the sign bit.

In other words, the binary representation of -K (negative K) as a N-bit numberis concat(l, 2V' - K).

Another way to look at this is that we invert the bits in the positive representation and then add 1, 3 is 011
in binary. Flip the bits to get 100, add 1 to get 101, then prepend the sign bit (1) to get 1101.

In a four-bit integer, this would look like the following.

Positive Values Negative Values
7 0in -1 1 111
6 0 110 -2 | 110
5 0 101 -3 | 101
4 0 100 -4 |1 100
3 0 011 -5 1011

2 o0 010 -6 1 010

1 0 001 -7 1 001

0 a 000

Observe that the absolute values of the integers on the left and right atways sum to 2%, and that the binary
values on the left and right sides are identical, other than the sign bit. Why is that?

* Arithmetic vs. Logical Right Shift

There are two types of right shift operators. The arithmetic right shift essentially divides by two. The logical
right shift does what we would visually see as shifting the bits. This is best seen on a negative number.

In a logical right shift, we shift the bits and put a 0 in the most significant bit. It is indicated with a >>>
operator. On an 8-bit integer (where the sign bit is the most significant bit), this would look like the image
below. The sign bit is indicated with a gray background.

CrackingTheCodinglInterview.com 16th Edition 113

Chapter 5 | Bit Manipulation

In an arithmetic right shift, we shift values to the right but fill in the new bits with the value of the sign bit.
This has the effect of {roughly) dividing by two. It is indicated by a >> operator.

110 1 110110 |1 =-75
1 110 1 110 I |0 =-38
What do you think these functions would do on parameters x = -93242 and count = 407?

int repeatedArithmeticShift(int x, int count) {
for (int i = 0; i < count; i++) {

x >>= 1; |l Arithmetic shift by 1
}

return x;

1

2

3

4

5

6 }
7

8 int repeatedLogicalShift(int x, int count) {
9

1

n

for (int i = 0; i < count; i++) {
0 x >>>= X; H Logical shift by 1
>
12 return x;

13 >
With the logical shift, we would get 0 because we are shifting a zero into the most significant bit repeatedly.

With the arithmetic shift, we would get -1 because we are shifting a one into the most significant bit
repeatediy. A sequence of all 1sin a (signed) integer represents -1.

> Common Bit Tasks: Getting and Setting

The following operations are very important to know, but do not simply memorize them. Memorizing leads
to mistakes that are impossible to recover from. Rather, understand how to implement these methods, so
that you can implement these, and other, bit problems.

Get Bit

This method shifts 1 over by i bits, creating a value that looks like 00010000. By performing an AND with
num, we clear all bits other than the bit at bit i. Finally, we compare that to 0. If that new value is not zero,
then bit i must have a 1. Otherwise, bit i is a 0.

1 boolean getBit(int num, int i) {

2 return ((num & (1 << i)) != 0);
3 >
Set Bit

SetBit shifts 1 over by i bits, creating a value like 00910000, By performing an OR with num, only the
value at bit i will change. All other bits of the mask are zero and will not affect num.

3 NG SERIRGY e D

3}

114 tracking the Coding Interview, 6th Edition

Chapters | Bit Manipulation

Clear Bit

This method operates in almost the reverse of setBit. First, we create a number like 11101111 by creating
the reverse of it (00010000) and negating it. Then, we perform an AND with num. This will clear the ith bit
and leave the remainder unchanged.

1 int clearBit(int num, int i) {
2 int mask = ~(1 << i);

3 return num & mask;

4 >

To clear ail bits from the most significant bit through i (inclusive), we create a mask with a 1 atthe ith bit (1
<< iJ.Then, we subtract 1 from it, giving us a sequence of Os followed by i Is, We then AND our number
with this mask to leave just the last i bits.

1 int clearBitsMSBthroughl(int num, int i) {

2 int mask = (1 << i) - 1;
3 return num 8 mask;
4 >

To clear all bits from i through 0 (inclusive), we take a sequence of all Is (which is -1) and shift it left by i
+ 1 bits.This gives us a sequence of Is (in the most significant bits) followed by i 0 bits.

1 int clearBitslthroughO(int num, int i) {
2 int mask = (-1 « (1 + i));

3 return num & mask;

4 >

Update Bit

To set the ith bitto a value v, we first clear the bit at position i by using a mask that looks like 11101111,
Then, we shift the intended value, v, left by i bits. This will create a number with bit i equal to v and all
other bits equal to 0. Finally, we OR these two numbers, updating the ith bit if v is 1 and leaving it as 0
otherwise.

1 int updateBit(int num, int i, boolean bitlsl) {
2 int value = bitlsl ? 1 : 8;

3 int mask = ~(1 << i);

4 return (num & mask) | (value << i);

5 1}

Interview Questions

51 Insertion: You are given two 32-bit numbers, N and M, and two bit positions, i and
j- Write a method to insert M into N such that M starts at bit j and ends at bit i. You
can assume that the bits j through i have enough space to fit all of M. That is, if
M = 10011, you can assume that there are at least 5 bits between j and i. You would not, for
example, have j = 3 and i = 2, because M could not fully fit between bit 3 and bit 2.

EXAMPLE

Input: N = 10000000000j M = 10011, i = 2, j = 6
Output: N = 10001001100
Hints: #137,if 169, #21S

CrackingTheCodinglnterview.com 16th Edition IS

Chapter 5 | Bit Manipulation

5.2 Binary to String: Given a reai number between 0 and 1 (e.g., 0.72) that is passed in as a double, print
the binary representation. Ifthe number cannot be represented accurately in binary with at most 32
characters, print "ERROR."

Hints:#143,#167,#173, #269, #297

5.3 Flip Bit to Win: You have an integer and you can flip exactly one bit from a 0 to a 1, Write code to
find the length of the longest sequence of Is you could create.

EXAMPLE
Input: 1775 (or: 11011101111)
Output: 8

Hints: #159, #226, #314, #352

5.4 Next Number: Given a positive integer, print the next smallest and the next largest number that
have the same number of 1 bits in their binary representation.

Hints: #147, #175, #242, #312, #339, #358, #375, #390

5.5 Debugger: Explain what thefollowing code does: ((n & (n-1)) == 0).
Hints: #15J,#202, #261, #302, #346, #372, #383, #398

5.6 Conversion: Write a function to determine the number of bits you would need to flip to convert
integer A to integer B.

EXAMPLE
Input: 29 (or: 11101), 15 (or: 01111)
Output: 2

Hints: #336, #369

5.7 PairwiseSwap: Write a program to swap odd and even bits in an integer with as few instructions as
possible (e.g., bit 9 and bit 1 are swapped, bit 2 and bit 3 are swapped, and so on).

Hints: #145, #248, #328, #355

5.8 Draw Line: A monochrome screen is stored as a single array of bytes, allowing eight consecutive
pixels to be stored in one byte. The screen has width w, where w is divisible by 8 (that is, no byte will
be split across rows). The height of the screen, of course, can be derived from the length of the array
and the width. Implement a function that draws a horizontal line from (xI, y) to (x2, vy).

The method signature should look something like:
drawline(byte[] screen., int width, int x|, int X2, int y)
Hints: #366, #381, #384, #391

Additional Questions: Arrays and Strings (#1.1, #1.4, #1.8), Math and Logic Puzzles (#6.10), Recursion (#8.4,
#8.14), Sorting and Searching (#10.7, #10.8), C++(#12.10), Moderate Problems (#16.1, #16.7), Hard Problems
(#17.1).

Hints start on page 662.

116 tracking the Coding Interview, 6th Edition

Math and Logic Puzzles

-called "puzzles"(or brain teasers) are some of the most hotly debated questions, and many companies
ave policies banning them. Unfortunately, even when these questions are banned, you still may find
yourself being asked one of them. Why? Because no one can agree on a definition of what a brainteaser is.

The good news is that if you are asked a puzzle or brainteaser, it's likely to be a reasonably fair one. It prob-
ably won't rely on a trick of wording, and it can almost always be logically deduced. Many have their foun-
dations in mathematics or computer science, and almost all have solutions that can be logically deduced.

We'll go through some common approaches for tackling these questions, as well as some of the essentia!
knowledge.

> Prime Numbers

As you probably know, every positive integer can be decomposed into a product of primes. For example:
84 = 23 * gl x gex 71 « |0 x 439 * 470 *

Note that many of these primes have an exponent of zero.

Divisibility
The prime number law stated above means that, in order for a number X to divide a number y (written
x\y, or mod(y, x) = 0), all primes in x's prime factorization must be in y's prime factorization. Or, more
specifically:

Letx = 2j0 * 3J1 * 512 L N VAR

Lety = 2k0 * 3k| * 5k3 * 7k3 * Ilki *

If x\y, then for alii, ji <= Kki.
In fact, the greatest common divisor of x and y will be:

gcd(x, y) - Qmint:I0r kB) * B2, 2> *
The least common multiple of x and y will be:

lem(Xj y) = * 3"xcji, ki) * ki) #

*

As a fun exercise, stop fora moment and think what would happen if you did gcd 1cm:

* minpa6, * 2|ta>:,\0, kOr % 3Bir| 31. hl> * *

icm = 2 o i
270 Hs *jax(j0, k) * Afflintjl, ki) + msifil, KI) +

-2je+K * 3 +ki *
= 2@ * 2k x gal x gkl o«

gcd

CrackingTtieCodingtnterview.com 16th Edition 117

Chapter 6 | Math and Logic Puzzles

= Xy

Checking for Primality

This question is so common that we feel the need to specifically cover it. The naive way is to simply iterate
from 2 through n-1, checking for divisibility on each iteration.

1 boolean primeNaive(int n) {

2 if (n < 2) {

3 return false;

4 }

5 for (int i = 2; i < n; i++) {
6 if (n % i — 6) {

7 return false;

8 }

9 }

10 return true;

1 }
A small but important improvement is to iterate only up through the square root of n.

-

boolean primeSlightlyBetter(int n) {

2 if (n <2){

3 return false;

4 }

5 int sqrt = (int) Math.sqrt(n);

6 for (int i = 2; i <= sqrt; i++) {

7 if (n % i == 0) return false;

8 >

9 return true;

10)

The \ n is sufficient because, for every number a whichjjivides n evenly, there is a complement b, where
a*b = n.lfa> Jt\,thenb < y'n (since (y n f=n). We therefore don't need a to check n's

primality, since we would have already checked with b.

Of course, in reality, all we really need to do is to check if n is divisible by a prime number. This is where the
Sieve of Eratosthenes comes in.

Generating a List of Primes: The Sieve of Eratosthenes

The Sieve of Eratosthenes is a highly efficient way to generate a iist of primes. It works by recognizing that
ail non-prime numbers are divisible by a prime number.

We start with a list of all the numbers up through some value max. First, we cross off alt numbers divisible by
2. Then, we look for the next prime (the next non-crossed off number) and cross off alt numbers divisible by
it. By crossing off alt numbers divisible by 2, 3, 5, 7,11, and so on, we wind up with a list of prime numbers
from 2 through max.

The code below implements the Sieve of Eratosthenes.

boolean[] sieveOfEratosthenesfint max) {
boolean[] flags = new boolean[max + 1];
int count = 0;

1
2
3
4
5 init(flags); // Set all flags to true other than 0 and 1
6 int prime = 2;

7

8

while (prime <= Math.sqrt(max)) {

118 Cracking the Coding Interview, 6th Edition

Chapter 6 | Math and Logic Puzzles

9 /* Cross off remaining multiples of prime */

10 crossOff(flags, prime);

11

12 /* Find next value which is true */

13 prime = getNextPrime(flags, prime);

14 >

15

16 return flags;

17 3}

18

19 void crossOff(boolean[] flags, int prime) {

20 /* Cross off remaining multiples of prime. We can start with (prime*prime),
21 * because if we have a k * prime, where k < prime, this value would have
22 * already been crossed off in a prior iteration. */

23 for (int i = prime * prime; i < flags.length; i += prime) {
24 flags[i] = false;

25 >

26 >

27

28 int getNextPrime(boolean[] flags, int prime) {

29 int next = prime + 1;

30 while (next < flags.length && 1flags[next]) {

31 next++;

32 >

33 return next;

34 3}

Of course, there are a number of optimizations that can be made to this. One simple one is to only use odd
numbers in the array, which would allow us to reduce our space usage by half.

* Probability

Probability can be a complex topic, but it's based in a few basic laws that can be logically derived.

Let's look at a Venn diagram to visualize two events A and B. The areas of the two circles represent their rela-
tive probability, and the overlapping area is the event {A and B).

A)
P

Probability of A and B

Imagine you were throwing a dart at this Venn diagram. What is the probability that you would land in the
intersection between A and B? If you knew the odds of landing in A, and you also knew the percent of A
that's also in B (that is, the odds of being in B given that you were in A), then you could express the prob-
ability as:

P(A and B) = P(B given A) P(A)
For example, imagine we were picking a number between 1 and 10 (inclusive). What's the probability of
picking an even numberand a number between 1 and 5? The odds of picking a number between 1 and 5 is
50%, and the odds of a number between 1 and 5 being even is 40%. So, the odds of doing both are:

P(x is even and x <= 5)

CrackingTheCoding I nterview.com 16th Edition 119

Chapter 6 j Math and Logic Puzzles

P(x is even given x <= 5) P(x <= 5)

(2/5) * (1/2)

1/5

Observe that since P(A and B) = P(B given A) P(A) = P(A given B) P(B), you can express
the probability of A given B in terms of the reverse:

P(A given B) = P(B given A) P(A) / P(B)

The above equation is called Bayes'Theorem.

Probability of A or B

Now, imagine you wanted to know what the probability of landing in A or B is. If you knew the odds of
landing in each individually, and you also knew the odds of landing in their intersection, then you could
express the probability as:

P(A or B) = P(A) + P(B) - P(A and B)
Logically, this makes sense. If we simply added their sizes, we would have double-counted their intersec-

tion. We need to subtract this out. We can again visualize this through a Venn diagram:
¢ g)
n
. AkeB)

for example, imagine we were picking a number between 1 and 10 (inclusive). What's the probability of
picking an even number or a number between 1 and 5? We have a 50% probability of picking an even
number and a 50% probability of picking a number between 1 and 5. The odds of doing both are 20%. So
the odds are:

P(x is even or x <=5)
P(x is even) + P(x <= 5) - P(x is even and x <= 5)

Myi+yi ~ Vi
e

From here, getting the special case rules for independent events and for mutually exclusive events is easy.

Independence

If Aand B are independent (that is, one happening tells you nothing about the other happening), then P(A
and 8) = P(A) P(B).This rulesimply comes from recognizing that P(B given A) = P(B),sinceA
indicates nothing about B.

Mutual Exclusivity

If A and B are mutually exclusive (that is, if one happens, then the other cannot happen), then P(A or B)
= P(A) + P{B). This is because P(A and B) = 0, so this term is removed from the earlier P(A or
B) equation.

Many people, strangely, mix up the concepts of independence and mutual exclusivity. They are entirely
different. In fact, two events cannot be both independent and mutually exclusive (provided both have
probabilities greater than 0), Why? Because mutual exclusivity means that if one happens then the other
cannot. Independence, however, says that one event happening means absolutely nothing about the other
event. Thus, as long as two events have non-zero probabilities, they will never be both mutually exclusive
and independent.

120 Cracking the Coding Interview, 6th Edition

Chapter 6 | Math and Logic Puzzles

if one or both events have a probability of zero (that is, it is impossible), then the events are both indepen-
dent and mutually exclusive. This is provable through a simple application of the definitions (that is, the
formulas) of independence and mutual exclusivity.

e Start Talking

Don't panic when you get a brainteaser. Like algorithm questions, interviewers want to see how you tackle
a problem; they don't expect you to immediately know the answer. Start talking, and show the interviewer
how you approach a problem.

> Develop Rules and Patterns

In many cases, you will find it useful to write down "'ruies"or patterns that you discover white solving the
problem. And yes, you really should write these down—it will help you remember them as you solve the
problem. Let's demonstrate this approach with an example.

Vou have two ropes, and each takes exactly one hour to burn. How would you use them to time exactly 15
minutes? Note that the ropes are of uneven densities, so halfthe rope length-wise does not necessarily take
halfan hour to burn.

I Tip: Stop here and spend some time trying to solve this problem on your own. Ifyou absolutely must,
read through this section for hints—but do so slowly. Every paragraph wilt get you a bit closer to the
solution.

From the statement of the problem, we immediately know that we can time one hour. We can also time
two hours, by lighting one rope, waiting until it is burnt and then lighting the second. We can generalize
this into a rule.

Rule !: Given a rope that takes x minutes to burn and another that takes y minutes, we can time X+y
minutes.

What else can we do with the rope? We can probably assume that lighting a rope in the middle (or anywhere
other than the ends) won't do us much good. The flames would expand in both directions, and we have no
idea how long it would take to burn.

However, we can tight a rope at both ends. The two flames would meet after 30 minutes.
Rule2: Given a rope that takes x minutes to burn, we can time Yi minutes.

We now know that we can time 30 minutes using a single rope. This also means that we can remove 30
minutes of burning time from the second rope, by lighting rope 1 on both ends and rope 2 on just one end,

/?ul/e3;lfrope 1 takes x minutes to burn and rope 2 takes y minutes, we can turn rope 2 into a rope that takes
(y-x) minutes or (y- %) minutes.

Now, let's piece alt of these together. We can turn rope 2 into a rope with 30 minutes of burn time. If we then
light rope 2 on the other end (see rule 2), rope 2 will be done after 15 minutes.

From start to end, our approach is as follows:
1, Light rope 1 at both ends and rope 2 at one end.

2. When the two flames on Rope 1 meet, 30 minutes will have passed. Rope 2 has 30 minutes left of burn-
time.

CrackingTheCoding I nterview.com 16th Edition 121

Chapter 6 j Math and Logic Puzzles

3. At that point, light Rope 2 at the other end.
4. In exactly fifteen minutes, Rope 2 will be completely burnt.

Note how solving this problem is made easier by listing out what you've learned and what "rules" you've
discovered.

* Worst Case Shifting

Many brainteasers are worst-case minimization problems, worded either in terms of minimizing an action
or in doing something at most a specific number oftimes. A useful technique is to try to "balance" the worst
case. That is, if an early decision results in a skewing of the worst case, we can sometimes change the deci-
sion to balance out the worst case. This will be clearest when explained with an example.

The "nine balls" question is a classic interview question. You have nine balls. Eight are of the same weight,
and one is heavier. You are given a balance which tells you only whether the left side or the right side is
heavier. Find the heavy ball in just two uses of the scale.

A first approach is to divide the balls in sets of four, with the ninth ball sitting off to the side. The heavy ball
is in the heavier set. If they are the same weight, then we know that the ninth bait is the heavy one. Repli-
cating this approach for the remaining sets would result in a worst case of three weighings—one too many!

This is an imbalance in the worst case: the ninth ball takes just one weighing to discover if it's heavy, whereas
others take three. If we penalize the ninth ball by putting more bails off to the side, we can lighten the load
on the others. This is an example of "worst case balancing."

If we divide the balls into sets of three items each, we will know after just one weighing which set has the
heavy one. We can even formalize this into a rule: given N balls, where N is divisible by 3, one use of the scale
will point us to a set of jK balls with the heavy ball.

For the final set of three balls, we simply repeat this: put one ball off to the side and weigh two. Pick the
heavier of the two. Or, if the balls are the same weight, pick the third one.

e Algorithm Approaches

If you're stuck, consider applying one of the approaches for solving algorithm questions (starting on page
67). Brainteasers are often nothing more than algorithm questions with the technical aspects removed.
Base Case and Build and Do It Yourself (DIY) can be especially useful.

Additional Reading: Useful Math (pg 629).

Interview Questions

6.1 The Heavy Pill: You have 20 bottles of pills. 19 bottles have 1.0 gram pills, but one has pills of weight
1.1 grams. Given a scale that provides an exact measurement, how would you find the heavy bottle?
You can only use the scale once.

Hints:# 186, #252, #319, #387

122 Cracking the Coding Interview, 6th Edition

6.2

6.3

6.4

6.5

6.6

6.7

Chapter 6 | Math and Logic Puzzles

Basketball: You have a basketball hoop and someone says that you can play one of two games.
Game 1: You get one shot to make the hoop.
Game 2: You get three shots and you have to make two of three shots.

If p is the probability of making a particular shot, for which values of p should you pick one game
or the other?

Hints: #181, #239, #284, #323

pg 2%

Dominos: There is an 8x8 chessboard in which two diagonally opposite corners have been cut off.
You are given 31 dominos, and a single domino can cover exactly two squares. Can you use the 31
dominos to cover the entire board? Prove your answer (by providing an example or showing why
it's impossible).
Hints: #367, #397

pg 291

Ants on aTriangie: There are three ants on different vertices of a triangle. What is the probability of
coliision (between any two or all of them) if they start walking on the sides of the triangle? Assume
that each ant randomly picks a direction, with either direction being equally likely to be chosen, and
that they walk at the same speed.

Similarly, find the probability of collision with n ants on an n-vertex polygon.

Hints: #157, #195, #296
291

Jugs of Water: You have a five-quartjug, a three-quart jug, and an unlimited supply of water (but
no measuring cups). How would you come up with exactly four quarts of water? Note that the jugs
are oddly shaped, such thatfilling up exactly "half" of the jug would be impossible.

Hints: #149, #379, #400

Blue-Eyed Island: A bunch of people are living on an island, when a visitor comes with a strange
order: all blue-eyed people must leave the island as soon as possible. There will be a flight out at
8:00 pm every evening. Each person can see everyone else's eye color, but they do not know their
own (nor is anyone allowed to tell them). Additionally, they do not know how many people have
blue eyes, although they do know that at least one person does. How many days will it take the
blue-eyed people to leave?

Hints: #218, #282, #34 7, #370

The Apocalypse: In the new post-apocalyptic world, the world queen is desperately concerned
about the birth rate. Therefore, she decrees that all families should ensure that they have one girl or
else they face massive fines. If all families abide by this policy—that is, they have continue to have
children until they have one girl, at which point they immediately stop—what will the gender ratio
of the new generation be? (Assume that the odds of someone having a boy or a girl on any given
pregnancy is equal.) Solve this out logically and then write a computer simulation of it.

Hints: #154, #160, #171, #188, #201

CrackingTheCoding I nterview.com 16th Edition 123

Chapter 6 j Math and Logic Puzzles

6.8

6.9

The Egg Drop Problem: There is a building of 100 floors. If an egg drops from the Nth floor or
above, it will break. Ifit's dropped from any floor below, it will not break. You're given two eggs. Find
N, while minimizing the number of drops for the worst case.

Hints; #156, #233, #294, #333, #357, #374, #395

100 Lockers: There are 100 closed lockers in a hallway. A man begins by opening all 100 lockers.
Next, he doses every second locker. Then, on his third pass, he toggles every third locker (closes it if
it is open or opens it ifit is closed). This process continues for 100 passes, such that on each pass i,
the man toggles every ith locker. After his 100th pass in the hallway, in which he toggles only locker
#100, how many lockers are open?

Hints:#139, #172, #264, #306

Poison: You have 1000 bottles of soda, and exactly one is poisoned. You have 10 test strips which
can be used to detect poison. A single drop of poison will turn the test strip positive permanently.
You can putany number of drops on a test strip at once and you can reuse a test strip as many times
as you'd like (as long as the results are negative). However, you can only run tests once per day and
it takes seven days to return a result. How would you figure out the poisoned bottle in as few days
as possible?

FOLLOW UP

Write code to simulate your approach.

Hints: #146, #163, #183, #191, #205, #221, #230, #241, #249

Additional Problems: Moderate Problems (#16.5), Hard Problems (#17.19)

Hints start on page 662.

124

Cracking the Coding Interview, 6th Edition

Object-Oriented Design

ject-oriented design questions require a candidate to sketch out the classes and methods to imple-
ent technical problems or real-life objects. These problems give—or at least are believed to give—
an interviewer insight into your coding style.

These questions are not so much about regurgitating design patterns as they are about demonstrating that
you understand how to create elegant, maintainable object-oriented code. Poor performance on this type
of question may raise serious red flags.

¢ How to Approach

Regardless of whether the object is a physical item or a technical task, object-oriented design questions can
be tackled in similar ways. The following approach will work well for many problems.

Step 1; Handle Ambiguity

Object-oriented design (OOD) questions are often intentionally vague in order to test whether you'll make
assumptions or if you'll ask clarifying questions. After ail, a developer who just codes something without
understanding what she is expected to create wastes the company's time and money, and may create much
more serious issues.

When being asked an object-oriented design question, you should inquire who is going to use it and how
they are going to use it. Depending on the question, you may even want to go through the "six Ws"; who,
what, where, when, how, why.

For example, suppose you were asked to describe the object-oriented design for a coffee maker. This seems
straightforward enough, right? Not quite.

Your coffee maker might be an industrial machine designed to be used in a massive restaurant servicing
hundreds of customers per hour and making ten different kinds of coffee products. Or it might be a very
simple machine, designed to be used by the elderly for just simple black coffee. These use cases will signifi-
cantly impact your design.

Step 2: Define the Core Objects

Now that we understand what we're designing, we should consider what the "core objects" in a system
are. For example, suppose we are asked to do the object-oriented design for a restaurant. Our core objects
might be things like Table, Guest, Party, Order, Meal, Employee, Server, and Host,

CrackingTheCodinglrtterview.com | 6th Edition 125

Chapter 7 | Object-Oriented Design

Step 3: Analyze Relationships

Having more or less decided on our core objects, we now want to analyze the relationships between the
objects. Which objects are members of which other objects? Do any objects inherit from any others? Are
relationships many-to-many or one-to-many?

For example, in the restaurant question, we may come up with the following design:
+ Party should have an array of Guests.

+ Server and Host inherit from Employee.

+ Each Table has one Party, but each Party may have multiple Tables.

+ There is one Host for the Restaurant.

Be very careful here—you can often make incorrect assumptions. For example, a single Table may have
multiple Parties (as is common in the trendy "communal tables"at some restaurants). You should talk to
your interviewer about how general purpose your design should be.

Step 4: Investigate Actions

At this point, you should have the basic outline of your object-oriented design. What remains is to consider
the key actions that the objects will take and how they relate to each other. You may find that you have
forgotten some objects, and you will need to update your design.

For example, a Party walks into the Restaurant, and a Guest requests a Table from the Host. The
Host looks up the Reservation and, if it exists, assigns the Party to a Table. Otherwise, the Party
is added to the end of the list. When a Party leaves, the Table is freed and assigned to a new Party in
the list.

* Design Patterns

Because interviewers are trying to test your capabilities and not your knowledge, design patterns are
mostly beyond the scope of an interview. However, the Singleton and Factory Method design patterns are
widely used in interviews, so we will cover them here.

There are far more design patterns than this book could possibly discuss. A great way to improve your soft-
ware engineering skills is to pick up a book that focuses on this area specifically.

Be careful you don't fall into a trap of constantly trying to find the "right" design pattern for a particular
problem. You should create the design that works for that problem. In some cases it might be an estab-
lished pattern, but in many other cases it is not.

Singleton Class

The Singleton pattern ensures that a class has only one instance and ensures access to the instance through
the application. It can be useful in cases where you have a "global" object with exactly one instance. For
example, we may want to implement Restaurant such that it has exactly one instance of Restaurant,

1 public class Restaurant {

2 private static Restaurant _instance = null;
3 protected Restaurant() { ... }

4 public static Restaurant getinstance() {

5 if {_instance == null) {

6 _instance = new Restaurant{);

7 }

126 Cracking the Coding Interview, 6th Edition

Chapter 7 | Object-Oriented Design

8 return “instance;
9 >
10 >

It should be noted that many people dislike the Singleton design pattern, even calling it an "anti-pattern.”
One reason for this is that it can interfere with unit testing.

Factory Method

The Factory Method offers an interface for creating an instance of a class, with its subclasses deciding
which class to instantiate. You might want to implement this with the creator class being abstract and not
providing an implementation for the Factory method. Or, you could have the Creator class be a concrete
class that provides an implementation for the Factory method. In this case, the Factory method would take
a parameter representing which class to instantiate.

1 public class CardGame {
2 public static CardGame createCardGame(GameType type) {

3 if (type == GameType.Poker) {

4 return new PokerGameQ)j

5 } else if (type == GameType.Blackjack) {
6 return new BlacklackGame();

7 >

8 return null;

9 ¥

10 >

Interview Questions

71 Deck of Cards: Design the data structures for a generic deck of cards. Explain how you would
subclass the data structures to implement blackjack.
Hints: »153, »275
pg 3DS

7.2 Call Center: Imagine you have a call center with three levels of employees: respondent, manager,
and director. An incoming telephone call must be first allocated to a respondent who is free. If the
respondent can't handle the call, he or she must escalate the call to a manager. Ifthe manager is not
free or not able to handle it, then the call should be escalated to a director. Design the classes and
data structures for this problem. Implement a method dispatchCall(} which assigns a call to
the first available employee.

Hints: 0363
pg 307

7.3 Jukebox: Design a musical jukebox using object-oriented principles.

Hints; if 198

7,4 Parking Lot: Design a parking lot using object-oriented principles.

Hints: #258

7.5 Online Book Reader: Design the data structures for an online book reader system.

Hints: #344

CrackingTlieCodinglnterview.com |6th Edition 127

Chapter 7 | Object-Oriented Design

7.6

7.7

7.8

7.9

128

Jigsaw: Implement an NxN jigsaw puzzle. Design the data structures and explain an algorithm to
solve the puzzle. You can assume that you have a fitsWith method which, when passed two
puzzle edges, returns true if the two edges belong together.

Hints: #192, #238, #283

Chat Server: Explain how you would design a chat server. In particular, provide details about the
various backend components, classes, and methods. What wouid be the hardest problems to solve?
Hints: #213, #245, #271

Othello: Othello is played as follows: Each Othello piece is white on one side and black on the other.
When a piece is surrounded by its opponents on both the left and right sides, or both the top and
bottom, it is said to be captured and its color is flipped. On your turn, you must capture at least one
of your opponent's pieces. The game ends when either user has no more valid moves. The win is
assigned to the person with the most pieces. Implement the object-oriented design for Othello.

Hints: #179, #228

Circular Array: Implementa CircularArray class that supports an array-like data structure which
can be efficiently rotated. If possible, the class should use a generic type (also called a template), and
should support iteration via the standard for (Obj o : circularArray) notation.

Hints: #389

Cracking the Coding Interview, 6th Edition

7,10

712

Chapter 7 | Object-Oriented Design

Minesweeper: Design and implement a text-based Minesweeper game. Minesweeper is the classic
single-player computer game where an NxN grid has B mines (or bombs) hidden across the grid.The
remaining cells are either blank or have a number behind them.The numbers reflect the number of
bombs in the surrounding eight cells. The user then uncovers a cell. If it is a bomb, the player loses.
If it is a number, the number is exposed. If it is a blank cell, this cell and all adjacent blank cells (up to
and including the surrounding numeric cells) are exposed. The player wins when all non-bomb cells
are exposed. The player can also flag certain places as potential bombs. This doesn't affect game
play, other than to block the user from accidentally clicking a cell that is thought to have a bomb
(Tip for the reader: if you're not familiar with this game, please play a few rounds online first.)

This is a fully exposed board with 3 The player initially sees a board with

bombs. This is not shown to the user. nothing exposed.

1011 2 27T 2

1] |1 2l T2 T2

2122 702222

11711 P 2T]2

1111 T 7] 22|72

11111 T 27777

10" |1 Pl 2 722

Clicking on cell (row = 1, co! =0) The user wins when everything other
would expose this: than bombs has been exposed.

1212?2712 10111
12|72 7]°? 1171
202|277 2122
1020?27\ 7\7 1021
11112 2]°? 10111

12177 1011

1227 1021

Hints: #351,1.361, #377, #386, #399
pg 332

File System: Explain the data structures and algorithms that you would use to design an in-memory
file system. lllustrate with an example in code where possible.
Hints: #141, #216

pg 337
Hash Table: Design and implementa hash table which uses chaining (linked lists) to handle colli-
sions.

Hints: #287, #307

Additional Questions: Threads and Locks (#16.3)

Hints start on page 662.

CrackingTlieCodinglnterview.com |6th Edition 129

Recursion and Dynamic Programming

ite there are a targe number of recursive problems, many follow similar patterns. A good hint that a
problem is recursive is that it can be built off of subproblems.

When you hear a problem beginning with the following statements, it's often (though not always) a good
candidate for recursion: "Design an algorithm to compute the nth ..""Write code to list the first n..." "Imple-
ment a method to compute all...", and so on.

I Tip: in my experience coaching candidates, people typically have about 50% accuracy in their

"this sounds like a recursive problem" instinct. Use that instinct, since that 50% is valuable. But

don't be afraid to look at the problem in a different way, even if you initially thought it seemed
recursive. There's also a 50% chance that you were wrong.

Practice makes perfect! The more problems you do, the easier it will be to recognize recursive problems.

* How to Approach

Recursive solutions, by definition, are built off of solutions to subproblems. Many times, this will mean
simply to compute f(n) by adding something, removing something, or otherwise changing the solution
for f(n-1). In other cases, you might solve the problem for the first half of the data set, then the second
half, and then merge those results.

There are many ways you might divide a problem into subproblems. Three of the most common approaches
to develop an algorithm are bottom-up, top-down, and half-and-half.

8ottom-Up Approach

The bottom-up approach is often the most intuitive. We start with knowing how to solve the problem
for a simple case, like a list with only one element. Then we figure out how to solve the problem for two
elements, then for three elements, and so on. The key here is to think about how you can build the solution
for one case off of the previous case (or multiple previous cases).

Top-Down Approach

The top-down approach can be more complex since it's less concrete. But sometimes, it's the best way to
think about the problem.

In these problems, we think about how we can divide the problem for case N into subproblems.

Be careful of overlap between the cases.

182
Cracking the Coding Interview, 6th Edition

Chapter 8 | Recursion and Dynamic Programming

Half-and-Half Approach
In addition to top-down and bottom-up approaches, it's often effective to divide the data set in half.

For example, binary search works with a "half-and-half"approach. When we look for an element in a sorted
array, we first figure out which half of the array contains the value. Then we recurse and search for it in that
half.

Merge sort is also a "half-and-half" approach. We sort each half of the array and then merge together the
sorted halves.

¢ Recursive vs. lterative Solutions

Recursive algorithms can be very space inefficient. Each recursive call adds a new layer to the stack, which
means that if your algorithm recurses to a depth of n, it uses at least 0(n) memory.

For this reason, it's often better to implement a recursive algorithm iteratively. All recursive algorithms can
be implemented iteratively, although sometimes the code to do so is much more complex. Before diving
into recursive code, ask yourself how hard it would be to implement it iteratively, and discuss the tradeoffs
with your interviewer.

> Dynamic Programming & Memoization

Although people make a big deal about how scary dynamic programming problems are, there's really no
need to be afraid of them. In fact, once you get the hang of them, these can actually be very easy problems.

Dynamic programming is mostly just a matter of taking a recursive algorithm and finding the overlapping
subproblems (that is, the repeated calls). You then cache those results for future recursive calls.

Alternatively, you can study the pattern of the recursive calls and implement something iterative. You still
"cache" previous work,

I A note on terminology: Some people call top-down dynamic programming "memoization" and
only use "dynamic programming" to refer to bottom-up work. We do not make such a distinction
here. We call both dynamic programming.

One of the simplest examples of dynamic programming is computing the nth Fibonacci number. A good
way to approach such a problem is often to implement it as a normal recursive solution, and then add the
caching part.

Fibonacci Numbers
Let's walk through an approach to compute the nth Fibonacci number.

Recursive

We will start with a recursive implementation. Sounds simple, right?
1 int fibonacci(int i) {

2 if (i == 0) return 0;

3 if {i == 1) return f1;

4 return fibonacci(i - 1) + fibonaccifi - 2);
5 >

143
CrackingTheCodinglnterview.com] 6th Edition

Chapter 8 j Recursion and Dynamic Programming

What is the runtime of this function? Think for a second before you answer.

If you said 0(n) or 0(n®) (as many people do), think again. Study the code path that the code takes.
Drawing the code paths as a tree {that is, the recursion tree) is useful on this and many recursive problems.

fib(4 fib(3)
fib(3) fib(2) ﬁb(Q fib(1)
fibC2J fib(l) fib(1) fib(e) fib(1) fib(e)

fib() fib(0)

Observe that the leaves on the tree are all fib (1) and fib (0). Those signify the base cases.

The total number of nodes in the tree will represent the runtime, since each call only does 0(1) work
outside of its recursive calls. Therefore, the number of calls is the runtime.

I Tip: Remember this for future problems. Drawing the recursive calls as a tree is a great way to
figure out the runtime of a recursive algorithm.

How many nodes are in the tree? Until we get down to the base cases (leaves), each node has two children.
Each node branches out twice.

The root node has two children. Each of those children has two children (so four children total in the "grand-
children" level). Each of those grandchildren has two children, and so on. If we do this n times, we'll have
roughly 0(2") nodes. This gives us a runtime of roughly 0(2").

I Actually, it's slightly better than 0(2"). If you look at the subtree, you might notice that (excluding
the leaf nodes and those immediately above it) the right subtree of any node is always smaller
than the left subtree. If they were the same size, we'd have an 0(2") runtime. But since the right
and left subtrees are not the same size, the true runtime is closerto 0(1.6"). Saying 0(2") is still
technically correct though as it describes an upper bound on the runtime (see "Big 0, Big Theta,

and Big Omega" on page 39), Either way, we still have an exponential runtime.

Indeed, if we implemented this on a computer, we'd seethe number of seconds increase exponentially.

0
60 |

40

0 10 20 30 40
Seconds to Generate Nth Fibonacci

We should look for a way to optimize this,

117 Cracking the Coding interview, 6th Edition

Chapter 8 | Recursion and Dynamic Programming

Top-Down Dynamic Programming (or Memoization)
Study the recursion tree. Where do you see identical nodes?

There are lots of identical nodes. For example, fib (3) appears twice and fib(2) appears three times. Why
should we recompute these from scratch each time?

Infact,whenwecallfib{n),we shouldn't have to do much more than 0(n) calls, since there's only 0(n)
possible values we can throw at fib. Each time we compute fib (i), we should just cache this result and
use it later.

This is exactly what memoization is.

With just a small modification, we can tweak this function to run in 0(n) time. We simply cache the results
of fibonacci(i) between calls.

int fibonaccifint n) {
return fibonacci(nj new int[n + 1]);

1

2

3 1}

4

5 int fibonacci(int i, int[] memo) {
6 if (i == |t i == 1) return i
7

8 if (memoli] == 0) {

9 memo[i) = fibonacci(i - I, memo) + fibonacci(i - 2, memo);
10 >

11 return memoli];

12}

While the first recursive function may take over a minute to generate the 50th Fibonacci number on a
typical computer, the dynamic programming method can generate the 10,000th Fibonacci number in just
fractions ofa millisecond, {Of course, with this exact code, the int would have overflowed very early on.)

Now, if we draw the recursion tree, it looks something like this (the black boxes represent cached calls that
returned immediately):

AM-fib(S)ArA
fib(3) |
fibfsyi
fib(l)
fib(l) fib(0)
How many nodes are in this tree now? We might notice that the tree now just shoots straight down, to a

depth of roughly n. Each node of those nodes has one other child, resulting in roughly 2n children in the
tree.This gives us a runtime ofO(n).

Often it can be useful to picture the recursion tree as something like this:

fib(5)

ifibtITl iWzTl fib(l)

fib(l) fib(e)

This isnotactually how the recursion occurred. However, by expanding the further up nodes rather than the

CrackingTheCodinglInterview.com] 6th Edition 133

Chapter 8 | Recursion and Dynamic Programming

lower nodes, you have a tree that grows wide before it grows deep. (lt's like doing this breadth-first rather
than depth-first.) Sometimes this makes it easier to compute the number of nodes in the tree. All you're
really doing is changing which nodes you expand and which ones return cached values. Try this if you're
stuck on computing the runtime of a dynamic programming problem.

Bottom-Up Dynamic Programming

We can also take this approach and implement it with bottom-up dynamic programming. Think about
doing the same things as the recursive memoized approach, but in reverse.

First, we compute fib (1) and fib(0), which are already known from the base cases. Then we use those
to compute fib (2). Then we use the prior answers to compute fib (3), then fib(4),and so on.

1 int fibonacci(int n) {

2 if (n == @) return 0;

3 else if (n == 1) return 1;

A

5 int[] memo = new int[n]j

6 memo[@] = 0J

7 memol[l] = 1;

8 for (int i = 2; i < nj i++) {

9 memol[i] = rmemofi - 1] + trtemoli
10 >

il return memon - 1] + memoln - 2];
12 >

If you really think about how this works, you only usememo[i] formemo [i+ 1] and memo [i+2].You don't
need it after that. Therefore, we can get rid of the memo table and just store a few variables.

1 int fibonacci(int n) {
2 if (n == 0) return 0j
3 int a = 0;

4 int b = 1;

5 for (int i = 2, i < nj i++) {
6 int c = a+ b;

7 a » b;

8 b = c;

9 }

10 return a + b;

1 }

This is basically storing the results from the last two Fibonacci values into a and b. At each iteration, we
compute the nextvalue (c = a + b)andthenmove (b, ¢ = a + b)into (a, b).

This explanation might seem like overkill for such a simple problem, but truly understanding this process
will make more difficult problems much easier. Going through the problems in this chapter, many of which
use dynamic programming, will help solidify your understanding.

Additional Reading: Proof by Induction (pg 631).

Interview Questions

8.1 Triple Step: A child is running up a staircase with n steps and can hop either 1 step, 2 steps, or 3
steps at a time, implement a method to count how many possible ways the child can run up the
stairs.

Hints: #152, #178,#277,#237, #262, #359

134 17i Cracking the Coding interview, 6th Edition

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Chapter 8 | Recursion and Dynamic Programming

Robot in a Grid: Imagine a robot sitting on the upper left corner of grid with r rows and c columns.
The robot can only move in two directions, right and down, but certain cells are "off limits" such that
the robot cannot step on them. Design an algorithm to find a path for the robot from the top left to
the bottom right.

Hints: #331, #360, #388

Magic Index: A magic index in an array A[0.. .n-1] is defined to be an index such that A[i] =
i. Given a sorted array of distinct integers, write a method to find a magic index, if one exists, in
array A.

FOLLOW UP
What if the values are not distinct?

Hints: #170, #204, #240, #286, #340

Power Set: Write a method to return all subsets of a set.
Hints: #273, #290, #338, #354, #373

Recursive Multiply: Write a recursive function to multiply two positive integers without using the
* operator. You can use addition, subtraction, and bit shifting, but you should minimize the number
of those operations.

Hints: #166, #203, #227, #234, #246, #280

Towers of Hanoi: In the classic problem of the Towers of Hanoi, you have 3 towers and N disks of
different sizes which can slide onto any tower. The puzzle starts with disks sorted in ascending order
of size from top to bottom (i.e., each disk sits on top of an even larger one). You have the following
constraints:

(1) Only one disk can be moved at a time.

(2) A disk is slid off the top of one tower onto another tower.

(3) A disk cannot be placed on top of a smaller disk.

Write a program to move the disks from the first tower to the last using stacks.

Hints: #144, #224, #250, #272, #318

Permutations without Dups: Write a method to compute all permutations of a string of unique
characters.

Hints: #150, #185, #200, #267, #278, #309, #335, #356

Permutations with Dups: Write a method to compute all permutations of a string whose charac-
ters are not necessarily unique. The list of permutations should not have duplicates.

Hints: #161, #190, #222, #255

CrackingTheCodinglInterview.com] 6th Edition 135

Chapter 8 j Recursion and Dynamic Programming

8.9

8.14

Parens; implement an algorithm to print all valid (e.g., properly opened and closed) combinations
of n pairs of parentheses.

EXAMPLE

Input: 3

Output:((())), (00:), ((»(>, 0(0), 00O
Hints: #138, #174, #187, #209, #243, #265, #295

Paint Fill: Implement the "paint fill"function that one might see on many image editing programs.
That is, given a screen (represented by a two-dimensional array of colors), a point, and a new color,
fill in the surrounding area until the color changes from the original cofor.

Hints: #364, #382

Coins: Given an infinite number of quarters (25 cents), dimes (10 cents), nickels (5 cents), and
pennies (1 cent), write code to calculate the number of ways of representing n cents.

Hints #300, #324, #343, #380, #394

Eight Queens: Write an algorithm to print all ways of arranging eight queens on an 8x8 chess board
so that none of them share the same row, column, or diagonal. In this case, "diagonal" means all
diagonals, notjust the two that bisect the board.

Hints: #308, #350, #371

Stack of Boxes: You have a stack of n boxes, with widths w,, heights hy, and depths d; The boxes
cannot be rotated and can only be stacked on top of one another if each box in the stack is strictly
larger than the box above it in width, height, and depth. Implement a method to compute the
height of the tallest possible stack. The height of a stack is the sum of the heights of each box.

Hints: #155, #194, #214, #260, #322, #368, #378

Boolean Evaluation: Given a boolean expression consisting of the symbols 0 (false), 1 (true), &
(AND), | (OR), and * (XOR), and a desired boolean result value result, implement a function to
count the number of ways of parenthesizing the expression such that it evaluates to result,
EXAMPLE

countEval("l*e|0jI", false) -> 2

countEval("0&0&0&I*1|0", true) -> 10

Hints: #148, #168, #197, #305, #327

Additional Questions: Linked Lists (#2.2, #2.5, #2.6), Stacks and Queues (#3.3), Trees and Graphs (#4.2, #4,3,
#4.4, #4.5, #4.,8, #4.10, #4.11, #4.12), Math and Logic Puzzles (#6,6), Sorting and Searching (#10.5, #10.9,
#10.10), C++ (#12.8), Moderate Problems (#16,11), Hard Problems (#17,4, #17.6, #17.8, #17.12, #17.13,
#17.15,#17.16,#17.24 #17.25).

Hints start on page 662,

136

17i Cracking the Codinginterview, 6th Edition

System Design and Scalability

spite how intimidating they seem, scalability questions can be among the easiest questions. There
are no"gotchas,"no tricks, and no fancy algorithms—at least not usually. What trips up many people is
that they believe there's something "magic" to these problems—some hidden bit of knowledge.

It's not like that. These questions are simply designed to see how you would perform in the real world. Ifyou
were asked by your manager to design some system, what would you do?

That's why you should approach it just like this. Tackle the problem by doing itjust like you would at work.
Ask questions. Engage the interviewer. Discuss the tradeoffs.

We will touch on some key concepts in this chapter, but recognize it's not really about memorizing these
concepts. Yes, understanding some big components of system design can be useful, but it's much more
about the process you take. There are good solutions and bad solutions. There is no perfect solution.

Handling the Questions

¢ Communicate: A key goal of system design questions is to evaluate your ability to communicate. Stay
engaged with the interviewer. Ask them questions. Be open about the issues of your system,

+ Go broad first: Don't dive straight into the algorithm part or get excessively focused on one part.

¢ Use the whiteboard: Using a whiteboard helps your interviewerfollow your proposed design. Get up to
the whiteboard in the very beginning and use it to draw a picture of what you're proposing.

¢ Acknowledge interviewer concerns: Your interviewer will likely jump in with concerns. Don't brush
them off; validate them. Acknowledge the issues your interviewer points out and make changes accord-
ingly.

¢ Be careful about assumptions: An incorrect assumption can dramatically change the problem. For

example, if your system produces analytics / statistics for a dataset, it matters whether those analytics
must be totally up to date.

« State your assumptions explicitly: When you do make assumptions, state them.This allows your inter-
viewer to correct you if you're mistaken, and shows that you at least know what assumptions you're
making.

* Estimate when necessary: In many cases, you might not have the data you need. For example, if you're

designing a web crawler, you might need to estimate how much space it will take to store all the URLs.

You can estimate this with other data you know.

» Drive: As the candidate, you should stay in the driver's seat. This doesn't mean you don't talk to your
interviewer; in fact, you musrtalkto your interviewer. However, you should be driving through the ques-

CrackingTheCodinglrtterview.com|6th Edition 149

dlcc

dlcc

dlcc

Chapter 9 | System Design and Scalability

tion. Ask questions. Be open about tradeoffs. Continue to go deeper. Continue to make improvements.

These questions are largely about the process rather than the ultimate design.

* Design: Step-By-Step

If your manager asked you to design a system such as TinyURL, you probably wouldn't just say, "Okay", then
lock yourself in your office to design it by yourself. You would probably have a lot more questions before
you do it. This is the way you should handle it in an interview.

Step 1:Scope the Problem

You can't design a system if you don't know what you're designing. Scoping the problem is important
because you want to ensure that you're building what the interviewer wants and because this might be
something that interviewer is specifically evaluating.

If you're asked something such as "Design TinyURL", you'll want to understand what exactly you need to
implement. Will people be able to specify their own short URLs? Or will it all be auto-generated? Will you
need to keep track of any stats on the clicks? Should the URLs stay alive forever, or do they have a timeout?

These are questions that must be answered before going further.

Make a list here as well of the major features or use cases. For example, for TinyURL, it might be:
+ Shortening a URL to a TinyURL.

- Analytics for a URL.

* Retrieving the URL associated with a TinyURL.

» User accounts and link management.

Step 2: Make_Reasonable Assumptions

It's okay to make some assumptions (when necessary), but they should be reasonable. For example, it
would not be reasonable to assume that your system only needs to process 100 users per day, or to assume
that you have infinite memory available.

However, it might be reasonable to design for a max of one million new URLs per day. Making this assump-
tion can help you calculate how much data your system might need to store.

Some assumptions might take some "product sense" (which is not a bad thing). For example, is it okay for
the data to be stale by a max of ten minutes? That all depends. If it takes 10 minutes for a just-entered URL
to work, that's a deal-breaking issue. People usually want these URLs to be active immediately. However, if
the statistics are ten minutes out of date, that might be okay. Talk to your interviewer about these sorts of
assumptions.

Step 3: Draw the Major Components

Get up out of that chair and go to the whiteboard. Draw a diagram of the major components. You might
have something like a frontend server (or set of servers) that pull data from the backend's data store. You
might have another set of servers that crawl the internet for some data, and another set that process
analytics. Draw a picture of what this system might look like.

Walk through your system from end-to-end to provide a flow. A user enters a new URL. Then what?

118 Cracking the Coding Interview, 6th Edition

dlcc

dlcc

dlcc

Chapter 9 [System Design and Scalability

It may help here to ignore major sea lability challenges and just pretend that the simple, obvious approaches
will be okay. You'll handle the big issues In Step 4,

Step 4; Identify the Key Issues

Once you have a basic design in mind. Focus on the key issues. What will be the bottlenecks or major chal-
lenges in the system?

For example, if you were designing TinyURL, one situation you might consider is that while some URLs will
be infrequently accessed, others can_suddenly peak. This might happen if a URL is posted on Reddit or
another popular forum. You don't necessarily want to constantly hit the database.

Your interviewer might provide some guidance here. If so, take this guidance and use it.

Step 5: Redesign for the Key Issues

Once you have identified the key issues, it's time to adjust your design for it. You might find that it involves
a major redesign or just some minor tweaking (like using a cache).

Stay up at the whiteboard here and update your diagramas your design changes.

Be open about any limitations in your design. Your interviewer will likely be aware ofthem, so it's important
to communicate that you're aware of them, too.

» Algorithms that Scale: Step-By-Step

In some cases, you're not being asked to design an entire system. You're just being asked to design a single
feature or algorithm, but you have to do it in a scalable way. Or, there might be one algorithm part that is
the"real"focus of a broader design question.

In these cases, try the following approach.

Step 1: Ask Questions

As in the earlier approach,_ask questions to make sure you really understand the question. There might
be_details the interviewer left out (intentionally or unintentionally). You can't solve a problem if you don't
understand exactly what the problem is.

Step 2; Make Believe

Pretend that the data can all fit on one machine and there are no memory limitations. How would you solve
the problem? The answer to this question will provide the general outline for your solution.

Step 3: Get Real

Now go back to the original problem. How much data can you fit on one machine, and what problems will
occur when you split up the data? Common problems include figuring out how to logically divide the data
up, and how one machine would identify where to look up a different piece of data.

Step 4: Solve Problems

Finally, think about how to solve the issues you identified in Step 2. Remember that the solution for each
issue might be to actually remove the issue entirely, or it might be to simply mitigate the issue. Usually, you

151
CrackingTheCodinglInterview.com | 6th Edition

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

Chapter 9 | System Design and Scalability

can continue using (with modifications) the approach you outlined in Step 1, but occasionally you will need
to fundamentally alter the approach.

Note that an iterative approach is typically useful. That is, once you have solved the problems from Step 3,
new problems may have emerged, and you must tackle those as well.

Your goal is not to re-architect a complex system that companies have spent millions of dollars building,

but rather to demonstrate that you can analyze and solve problems,_Poking holes in your own solution is a

fantastic way to demonstrate this.

* Key Concepts

While system design questions aren't really tests of what you know, certain concepts can make things a lot
easier. We will give a brief overview here. All ofthese are deep, complex topics, so we encourage you to use
online resources for more research.

Hori | vs. Vertical Scali

A system can be scaled one of two ways.

+ \Vertical scaling means increasing the resources of a specific node. For example, you might add_addi-
tional memory to a server to improve its ability to handle load changes.

* Horizontal scaling means increasing the number of nodes. For example, you might_add additional
servers, thus decreasing the load on any one server.

Vertical scaling is generally easier than horizontal scaling. but it's limited. You can only add so much memory
or disk space.

Load Balancer

Typically, some frontend parts of a scalable website will be thrown behind a load balancer. This allows a
system to distribute the load evenly so that one server doesn't crash and take down the whole system. To
do so, of course, you have to build out a network of cloned servers that all have essentially the_same code
and access to the same data.

Database Denormalization and NoSQL
oins in a relational databa
would generally avoid them.

Denormalization is one part of this. Denormalization means adding redundant information into a database
to speed up reads. For example, imagine a database describing projects and tasks (where a project can have
multiple tasks). You might need to get the project name and the task information. Rather than doing a join

. For this reason, you

across these tables, you can store the project name within the task table {in addition to the project table).

Or, you can go with a NoSQL database. A NoSQL database does not support joins and might structure data
in a different way. It is designed to_scale better.

Datat Partitioning (Sharding)
Sharding means_splitting the data across multiple machines while ensuring you have a way of figuring out

which data is on which machine.

A few common ways of partitioning include:

118
Cracking the Coding Interview, 6th Edition

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

Chapter 9 [System Design and Scalability

* Vertical Partitioning: This is basically partitioning by feature, For example, if you were building a social

network, you might have one partition for tables relating to profiles, another one for messages, and so

on. One drawback ofthis is that if one of these tables gets very large, you might need to repartition that

database (possibly using a different partitioning scheme).

* Key-Based (or Hash-Based) Partitioning: This uses some part of the data (for example an ID) to parti-
tion it, Avery simple way to do this is to_allocate N servers and put the data on mod (key. n). One issue
with this is that the_number of servers you have is effectively fixed. Adding additional servers means

reallocating all the data—a very expensive task.

* Directory-Based Partitioning: In this scheme, you maintain a lookup table for where the data can be
found. This makes it relatively easy to add additional servers, but it comes with two major drawbacks.
First, the lookup table can be a single point of failure. Second, constantly accessing this table impacts
performance.

Many architectures actually end up using multiple partitioning schemes.

Caching

An in-memory cache can deliver very rapid results. Itis a simple key-value pairing and typically sits between
your application layer and your data store.

When an application requests a piece ofinformation, it first tries the cache. If the cache does not contain the
key, it will then look up the data in the data store. (At this point, the data might—or might not—be stored
in the data store.)

When you cache, you might cache a query and its results directly. Or, alternatively, you can cache the specific
object (for example, a rendered version of a part of the website, or a list of the most recent blog posts).

Asynchronous Processing & Queues

Slow operations should ideally be_done asynchronously. Otherwise, a user might get stuck waiting and

waiting for a process to complete.

In some cases, we can do this in advance (i.e., we can pre-process). For example, we might have a queue of
jobs to be done that update some part of the website. If we were running a forum, one of these jobs might
be to re-render a page that lists the most popular posts and the number of comments. That list might end

up being slightly out of date, but that's perhaps okay. It's better than a user stuck waiting on the website

to load simply because someone added a new comment and invalidated the cached version of this page.

In other cases, we might tell the user to wait and notify them when the process is done. You've probably

seen this on websites before. Perhaps you enabled some new part of a website and it says it needs a few
minutes to import your data, but you'll get a notification when it's done.

N king Metri
Some of the most important metrics around networking include:

*

Bandwidth: This is the maximum amount of data that can be transferred in a unit of time. It is typically
expressed in bits per second (or some similar ways, such as gigabytes per second),

* Throughput: Whereas bandwidth is the maximum data that can be transferred in a unit of time,
throughput is the_actual amount of data that is transferred.

Latency:This is how long it takes data to go from one end to the other. That is, it is the delay between the
sender sending information (even a very small chunk of data) and the receiver receiving it,

*

CrackingTheCodinglnterview.com | 6th Edition 141

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

dlcc

Chapter 9 | System Design and Scalability

Imagine you have a conveyor belt that transfers items across a factory. Latency is the time it takes an item to
go from one side to another. Throughput is the number of items that roll off the conveyor belt per second.

» Building a fatter conveyor belt will not change latency. It will, however, change throughput and band-
width. You can get more items on the belt, thus transferring more in a given unit of time.

» Shortening the belt will decrease latency, since items spend less time in transit. It won't change the
throughput or bandwidth. The same number of items will roll off the belt per unit of time.

» Making a faster conveyor belt will change all three. The time it takes an item to travel across the factory
decreases. More items will also roll off the conveyor belt per unit of time,

- Bandwidth is the number of items that can be transferred per unit of time, in the best possible condi-
tions. Throughput is the time it really takes, when the machines perhaps aren't operating smoothly.

Latency can be easy to disregard, but it can be very important in particular situations. For example, ifyou're
playing certain online games, latency can be a very big deal. How can you play a typical online sports game
(like a two-player football game) if you aren't notified very quickly of your opponent's movement? Addition-
ally, unlike throughput where at least you have the option of speeding things up through data compres-
sion, there is often little you can do about latency.

MapReduce

MapReduce is often associated with Google, but it's used much more broadly than that. A MapReduce
program is typically used to process large amounts of data.

As its name suggests, a MapReduce program requires you to write a Map step and a Reduce step.The rest
is handled by the system.

* Map takes in some data and emits a <key, value> pair.

+ Reduce takes a key and a set of associated values and "reduces" them in some way, emitting a new key
and value. The results of this might be fed back into the Reduce program for more reducing.

MapReduce allows us to do a lot of processing in parallel, which makes processing huge amounts of data
more scalable.

For more information, see "MapReduce" on page 642.

¢ Considerations

In addition to the earlier concepts to learn, you should consider the following issues when designing a
system.
» Failures: Essentially any part of a system can fait. You'll need to plan for many or all of these failures.

¢ Availability and Reliability: Availability is a function of the percentage of time the system is opera-
tional. Reliability is a function of the probability that the system is operational for a certain unit of time.

¢ Read-heavy vs. Write-heavy: Whether an application will do a lot of reads or a lot of writes impacts the
design. If it's write-heavy, you could consider queuing up the writes {but think about potential failure
here!). If it's read-heavy, you might want to cache. Other design decisions could change as well.

- Security: Security threats can, of course, be devastating for a system. Think about the types of issues a
system might face and design around those.

This is just to get you started with the potential issues for a system, Remember to be open in your interview
about the tradeoffs.

118 Cracking the Coding Interview, 6th Edition

dlcc

Chapter 9 [System Design and Scalability

* There is no "perfect"” system.

There is no single design for TinyURL or Google Maps or any other system that works perfectly {although
there are a great number that would work terribly). There are always tradeoffs. Two people could have
substantially different designs for a system, with both being excellent given different assumptions.

Your goal in these problems is to be able to understand use cases, scope a problem, make reasonable
assumptions, create a solid design based on those assumptions, and be open about the weaknesses of your
design. Do not expect something perfect.

> Example Problem

Given a list of millions of documents, how would you find all documents that contain a list of words? The words
can appear in any order, but they must be complete words. That is, "book" does not match "bookkeeper”

Before we start solving the problem, we need to understand whether this is a one time only operation, or if
thisfindWords procedure will be called repeatedly. Let's assume that we will be calling findWords many
times for the same set of documents, and, therefore, we can accept the burden of pre-processing.

Step 1

The first step is to pretend we just have a few dozen documents. How would we implement findWordsin
this case? (Tip: stop here and try to solve this yourself before reading on.)

One way to do this is to pre-process each document and create a hash table index. This hash table would
map from a word to a list of the documents that contain that word.

"books" -> {doc2j doc3, doc6j doc8>

"many" -> {docl, doc3j doc7, doc8, doc9)
To search for "many books,"we would simply do an intersection on the values for"books"and "many" and
return {doc3, doc8} as the result.

Step 2

Now go back to the original problem. What problems are introduced with millions of documents? For
starters, we probably need to divide up the documents across many machines. Also, depending on a variety
of factors, such as the number of possible words and the repetition of words in a document, we may not be
able to fit the full hash table on one machine. Let's assume that this is the case.

This division introduces the following key concerns:

1. How will we divide up our hash table? We could divide it up by keyword, such that a given machine
contains the full document list for a given word. Or, we could divide by document, such that a machine
contains the keyword mapping for only a subset of the documents.

2. Once we decide how to divide up the data, we may need to process a document on one machine and
push the results off to other machines. What does this process look like? (Note: if we divide the hash
table by document, this step may not be necessary.)

3. We will need a way of knowing which machine holds a piece of data. What does this lookup table look
like, and where is it stored?

These are just three concerns. There may be many others.

CrackingTheCodinglnterview.com | 6th Edition 143

Chapter 9 | System Design and Scalability

Step 3

In Step 3, we find solutions to each of these issues. One solution is to divide up the words alphabetically by
keyword, such that each machine controls a range of words (e.g., "after"through "apple").

We can implement a simple algorithm in which we iterate through the keywords alphabetically, storing as
much data as possible on one machine. When that machine is full, we can move to the next machine.

The advantage of this approach is that the lookup table is small and simple (since it must only specify a
range of values), and each machine can store a copy of the lookup table. However, the disadvantage is that
if new documents or words are added, we may need to perform an expensive shift of keywords.

Tofind all the documents that match a list of strings, we would first sort the listand then send each machine
a lookup request for the strings that the machine owns. For example, if our string is "after builds
boat amaze banana", machine 1 would get a lookup requestfor {"after", "amaze"}.

Machine 1 looks up the documents containing "after"and "amaze,"and performs an intersection on these
document lists. Machine 3 does the same for {"banana", "boat", "builds"}, and intersects their
lists.

In the final step, the initial machine would do an intersection on the results from Machine 1 and Machine 3.
The following diagram explains this process.

"after builds boat amaze banana"
i

1
Machine 1: "after amaze" Machine 3: "builds boat banana"

"builds" -> doc3, doc4, docS
"boat" -> doc2, doc3, doch
"banana" -> doc3, doc4j doch

"after" -> docl, docs, doc7
"amaze" -> doc2, doc5j doc7

{doc5, doe?} {doc3, docS}

solution = does

Interview Questions

These questions are designed to mirror a real interview, so they will not always be well defined. Think about
what questions you would ask your interviewer and then make reasonable assumptions. You may make
different assumptions than us, and that will lead you to a very different design. That's okay!

Stock Data: Imagine you are building some sort of service that will be called by up to 1,000 client
applications to get simple end-of-day stock price information (open, close, high, low). You may
assume that you already have the data, and you can store it in any format you wish. How would you
design the client-facing service that provides the information to client applications? You are respon-
sible for the development, rollout, and ongoing monitoring and maintenance of the feed. Describe
the different methods you considered and why you would recommend your approach. Your service
can use any technologies you wish, and can distribute the information to the client applications in
any mechanism you choose.

Hints: #385, #396

118
Cracking the Coding Interview, 6th Edition

9.2

9.3

9.4

9.5

9.6

9.7

9.8

Chapter 9 [System Design and Scalability

Social Network: How would you design the data structures for a very large social network like Face-
book or LinkedIn? Describe how you would design an algorithm to show the shortest path between
two people (e.g.. Me -> Bob -> Susan -> Jason -> You).

Hints: #270, #285, #304, #321

Web Crawler: If you were designing a web crawler, how would you avoid getting into infinite loops?

Hints: #334, #3563, #365

Duplicate URLs: You have 10 billion URLs. How do you detect the duplicate documents? In this
case, assume "duplicate" means that the URLs are identical.

Hints: #326, #347
pg 380

Cache: Imagine a web server for a simplified search engine. This system has 100 machines to
respond to search queries, which may then call out using processSearch(string query) to
another cluster of machines to actually get the result. The machine which responds to a given query
is chosen at random, so you cannot guarantee that the same machine will always respond to the
same request. The method processSearch is very expensive. Design a caching mechanism for
the most recent queries. Be sure to explain how you would update the cache when data changes.

Hints: #259, #274, #293, #311

Sales Rank: A large eCommerce company wishes to list the best-setling products, overall and by
category. For example, one product might be the #1056th best-selling product overall but the #13th
best-selling product under "Sports Equipment" and the #24th best-seiling product under "Safety."
Describe how you would design this system.

Hints: 0142, #158, #176, #189, #208, #223, #236, #244

Personal Financial Manager: Explain how you would design a personal financial manager (like
Mint.com). This system would connect to your bank accounts, analyze your spending habits, and
make recommendations.
Hints: #162, #180, #199, #212, #247, #276

pg 38£

Pastebin: Design a system like Pastebin, where a user can enter a piece of text and get a randomly
generated URL to access it.

Hints:#165, #184, #206, #232

Additional Questions: Object-Oriented Design (#7.7)

Hints start on page 662.

CrackingTheCodinglnterview.com | 6th Edition 145

10

Sorting and Searching

derstanding the common sorting and searching algorithms is incredibly valuable, as many sorting
nd searching problems are tweaks of the well-known algorithms. A good approach is therefore to run
through the different sorting algorithms and see if one applies particularly well.

For example, suppose you are asked the following question: Given a very large array of Person objects,
sort the people in increasing order of age.

We're given two interesting bits of knowledge here:
1. It's a large array, so efficiency is very important.
2. We are sorting based on ages, so we know the values are in a small range.

By scanning through the various sorting algorithms, we might notice that bucket sort (or radix sort) would
be a perfect candidate for this algorithm. In fact, we can make the buckets small (just 1 year each) and get
0(n) running time.

e Common Sorting Algorithms

Learning (or re-iearning) the common sorting algorithms is a great way to boost your performance. Of the
five algorithms explained below. Merge Sort, Quick Sort and Bucket Sort are the most commonly used in
interviews.

Bubble Sort | Runtime: 0(n?) average and worst case. Memory: 0(1).

In bubble sort, we start at the beginning of the array and swap the first two elements if the first is greater
than the second. Then, we go to the next pair, and so on, continuously making sweeps of the array until it is
sorted, tn doing so, the smaller items slowly "bubble" up to the beginning of the list.

Selection Sort | Runtime: 0(n?) average and worst case. Memory; 0(1).

Selection sort is the child's algorithm: simple, but inefficient. Find the smallest element using a linear scan
and move it to the front (swapping it with the front element). Then, find the second smallest and move it,
again doing a linear scan. Continue doing this until all the elements are in place.

Merge Sort | Runtime: 0(n log(n)) average and worst case. Memory: Depends.

Merge sort divides the array in half, sorts each of those halves, and then merges them back together. Each
of those halves has the same sorting algorithm applied to it. Eventually, you are merging just two single-
element arrays. It is the "merge" part that does all the heavy lifting.

182
Cracking the Coding Interview, 6th Edition

Chapter 10 j Sorting and Searching

The merge method operates by copying all the elements from the target array segment into a helper array,
keeping track of where the start of the left and right halves should be (helperLeft and helperRight).
We then iterate through helper, copying the smalier element from each half into the array. At the end, we
copy any remaining elements into the target array.

1 void mergesort(int[] array) {

2 int[] helper = new int[array.length];

3 mergesort(array, helper, 0, array.length - 1);

4 >

5

6 void mergesort(int[] array, int[] helper, Int low, int high) {
7 if (low < high) {

8 int middle = (low + high) / 2;

9 mergesort(array, helper, low, middle); // Sort left half
10 mergesort(array, helper, middle+l, high); // Sort right half
11 merge(array, helper, low, middle, high); // Merge them
12 >

13 }

14

15 void merge(int[] array, int[] helper, int low, int middle, int high) {
16 /* Copy both halves into a helper array */

17 for (int i = low; i <= high; i++) {

18 helper[i] = arrayl[il;

19 >

20

21 int helperLeft = low;

22 int helperRight = middle + 1;

23 int current = low;

24

25 /* lterate through helper array. Compare the left and right half, copying back
26 * the smaller element from the two halves into the original array. */
27 while (helperLeft <= middle S& helperRight <= high) {

28 if (helper[helperLeft] <= helper[helperRight]) {

29 array[current] = helper[helperLeft);

30 helperLeft++;

31) else { // If right element is smaller than left element

32 array[current] = helper[helperRight];

33 helperRight++;

34 >

35 current++;

36 >

37

38 /* Copy the rest of the left side of the array into the target array */
39 int remaining = middle - helperLeft;

48 for (int i = 8; i <= remaining; i++) {

41 array[current + i] = helper[helperLeft + i];

42 >

43 >

You may notice that only the remaining elements from the left half of the helper array are copied into the
target array. Why not the right half? The right half doesn't need to be copied because it's already there.

Consider, for example, an array like [1, 4, 5 [[2, 8, 9] (the"| | "indicates the partition point). Prior
to merging the two halves, both the helper array and the target array segment will end with [8, 9], Once
we copy over four elements (1, 4, 5, and 2) into the target array, the [8, 9] will still be in place in both
arrays. There's no need to copy them over.

CrackingTheCodinglInterview.com 16th Edition 147

Chapter 10 | Sorting and Searching

The space complexity of merge sort is 0(n) due to the auxiliary space used to merge parts of the array.

Quicksort | Runtime: 0(n log(n)) average, 0(n?) worst case. Memory: 0(log(n)).

In quicksort, we pick a random element and partition the array, such that all numbers that are iess than the
partitioning element come before all elements that are greater than it. The partitioning can be performed
efficiently through a series of swaps (see below).

If we repeatedly partition the array (and its sub-arrays) around an element, the array will eventually become
sorted. However, as the partitioned element is not guaranteed to be the median {or anywhere near the
median), our sorting could be very slow. This is the reason for theO(n') worst case runtime.

1 void quicksort(int[] arr, int left, int right) {

2 int index = partition(arr, left, right);

3 if (left < index - 1) { // Sort left half

4 quickSort(arr, left, index - 1);

5 }

6 if (index < right) (// Sort right half
quickSort(arr, index, right);

8 }

9 '}

10

11 int partition(int() arr, int left, int right) {
12 int pivot = arr[(left + right) / 2]; // Pick pivot point
13 while (left <= right) {

14 /I Find element on left that should be on right
15 while (arr[left] < pivot) left++;

16

17 /I Find element on right that should be on left
18 while (arrfright] > pivot) right--;

19

20 U Swap elements, and move left and right indices
21 if (left <= right) {

22 swap(arr, left, right); // swaps elements
23 left++;

24 right--;

25 }

26 }

27 return left;

28 >

Radix Sort | Runtime: 0(kn) (see below)

Radix sort is a sorting algorithm for integers (and some other data types) that takes advantage of the
fact that integers have a finite number of bits. In radix sort, we iterate through each digit of the number,
grouping numbers by each digit. For example, if we have an array of integers, we might first sort by the
first digit, so that the Os are grouped together. Then, we sort each of these groupings by the next digit. We
repeat this process sorting by each subsequent digit, until finally the whole array is sorted.

Unlike comparison sorting algorithms, which cannot perform better than O(n log(n)) in the average
case, radix sort has a runtime of 0(kn), where n is the number of elements and k is the number of passes
of the sorting algorithm.

148 Cracking the Coding Interview, 6th Edition

Chapter 10 j Sorting and Searching

* Searching Algorithms

When we think of searching algorithms, we generally think of binary search. Indeed, this is a very useful
algorithm to study.

in binary search, we look for an element x in a sorted array by first comparing x to the midpoint of the array.
If x is less than the midpoint, then we search the left half of the array. If x is greater than the midpoint, then
we search the right half of the array. We then repeat this process, treating the left and right halves as subar-
rays. Again, we compare x to the midpoint of this subarray and then search either its left or right side. We
repeat this process until we either find x or the subarray has size 0.

Note that although the concept is fairly simple, getting all the details right is far more difficult than you
might think. As you study the code below, pay attention to the plus ones and minus ones.

1 int binarySearch(int[] a, int x) {
2 int low = ©;

3 int high » a,length - 1;

4 int mid;

5

6 while (low <= high) {

7 mid = (low + high) / 2;
8 if (a[mid] < x) {

9 low = mid + 1;

10 > else if (a[mid] > x) {
11 high = mid - 1;

12 > else {

13 return mid;

14 >

15 >

16 return -1; // Error

17 }

18

19 int binarySearchRecursive(int[] a, int x, Int low, int high) {
20 if (low > high) return -1; // Error

21

22 int mid = (low + high) / 2;

23 if (a[mid] < x) {

24 return binarySearchRecursive(a, mid + 1, high);
25 > else if (a[mid] > x) {

26 return binarySearchRecursive(a, x, low, mid - 1);
27 } else {

28 return mid;

29 >

30 >

Potential ways to search a data structure extend beyond binary search, and you would do best not to limit
yourselftojust this option. You might, for example, search for a node by leveraging a binary tree, or by using
a hash table. Think beyond binary search!

Interview Questions

10.1 Sorted Merge: You are given two sorted arrays, A and B, where A has a large enough buffer at the
end to hold B. Write a method to merge B into A in sorted order.

Hints: it332

CrackingTheCodinglnterview.com 16th Edition 149

Chapter 10 | Sorting and Searching

10.2

10.3

10.4

10.5

10.6

10.7

162

Group Anagrams: Write a method to sort an array of strings so that all the anagrams are next to
each other.

Hints: #177, #182, #263, #342

Search in Rotated Array: Given a sorted array of n integers that has been rotated an unknown
number of times, write code to find an element in the array. You may assume that the array was
originally sorted in increasing order,

EXAMPLE

Input: find 5in [15, 16, 19, 20, 25, 1, 3, 4, 5, 7, 10, 14}

Output: 8 (the index of 5 in the array)

Hints: #298, #310

Sorted Search, No Size: You are given an array-like data structure Listy which lacks a size
method. It does, however, have an elementAt (i) method that returns the element at index i in
0(1) time, if i is beyond the bounds of the data structure, it returns -1. (For this reason, the data
structure only supports positive integers.) Given a Listy which contains sorted, positive integers,
find the index at which an element X occurs. If x occurs multiple times, you may return any index.
Hints: #320, #337, #348

Sparse Search: Given a sorted array of strings that is interspersed with empty strings, write a
method to find the location of a given string.

EXAMPLE

Input: ball,{"at", "", "", "", "ball", v, "car", """, "", "dad", "",
any

Output: 4

Hints: #256

Sort Big File: Imagine you have a 20 GB file with one string per line. Explain how you would sort
the file.

Hints: #207

Missing Int: Given an input file with four billion non-negative integers, provide an algorithm to
generate an integer that is not contained in the file. Assume you have 1 GB of memory available for
this task.

FOLLOW UP

What if you have only 10 MB of memory? Assume that ail the values are distinct and we now have
no more than one billion non-negative i