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1. INTRODUCTION

Coalition formation is of fundamental importance in a wide variety of
social, economic, and political problems, ranging from communication and
trade to legislative voting. As such, there is much about the formation
of coalitions that deserves study. In this paper, we examine the purely
hedonic aspect of coalition formation. This terminology follows Drèze and
Greenberg (1980), who call the dependence of a player’s utility on the iden-
tity of the members of her coalition the “hedonic aspect.” Essentially, the
purely hedonic problem that we examine here boils coalition formation
down to its purest social form: the payoff to a player depends only on the
composition of members of the coalition to which she belongs.
Examples of situations where players’ preferences in coalition formation

are hedonic include the formation of social clubs, groups, and organizations,
as well as faculties, teams, and societies. Situations where preferences are
derived from activities that a group will undertake, such as the provision of
a public good, are also hedonic provided that a player’s preferences depend
only on the members of her own coalition and not on the composition of
other coalitions. For instance, if a coalition median votes on a level of public
good to provide, then a player can predict the public good level that will
be provided by different coalitions and evaluate coalitions by knowing their
membership. More generally, many situations where players form groups
and then each group chooses from a set of available alternatives can be
reduced to hedonic settings, if reliable predictions can be formed from the
beginning about each group’s subsequent choice.
While the stability of coalition partitions where players have preferences

over members of their coalition has been examined in a number of models
(especially those where there are local public goods or some sort of political
interaction as in Guesnerie and Oddou, 1981; Greenberg and Weber, 1986,
1993; Demange, 1994; among others),4 the purely hedonic model covers
interesting settings and issues that have not been previously studied.5 We
discuss the differences in more detail in Section 2.
The focus of our paper is on the existence of stable coalition partitions

in the hedonic model. While there are some hedonic settings where there

4There is also the large literature on the marriage problem of Gale and Shapley (1962),
assignment games of Shapley and Shubik (1972), as well as various offshoots (see Roth and
Sotomayor, 1990).

5A notable exception to this is Jehiel and Scotchmer (2001). They examine the formation
of jurisdictions where voters anticipate a median vote over a level of public good supplied.
Their model has a continuum of players and so does not fit into the definition of hedonic
settings explored here, but it is still an example of a model where preferences are hedonic.
We refer the reader to Jehiel and Scotchmer for some interesting comparisons of various rules
for admission into a jurisdiction.
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exist core stable coalition partitions, as discussed in Section 4,6 there are
many where there do not, and yet there still exist partitions, stable in a
noncooperative sense. The main results of this paper relate to the existence
of stable coalition partitions when only individual movements are allowed,
so that only one individual considers changing her coalition at a time.
Noncooperative stability tests make sense if players are small relative to

the size of coalitions or if the cost of coordinating movements to form a new
coalition is high. Examples one might have in mind include professors con-
sidering changing universities, soccer players considering changing teams,
individuals changing communities where their public goods and taxes are
decided, and individuals considering changing clubs.7 One notion that we
examine is that of individual stability. This concept is based on the concept
of “individually stable equilibrium” from a nonhedonic model by Greenberg
(1978) and Drèze and Greenberg (1980); but it is modified to apply to the
purely hedonic setting where no allocations of goods need to be kept track
of. A coalition partition is individually stable if it is immune to individual
movements which benefit the moving player and do not hurt any member
of the coalition she joins.
We begin by showing that if preferences are additively separable and

symmetric (i.e., players have the same reciprocal values for each other),
then the set of individually stable coalition partitions is nonempty. We also
show that with such preferences, the set of Nash stable coalition partitions
is nonempty, where Nash stability is a noncooperative notion of stability
that is stronger than individual stability in the sense that players do not
need permission to join a new coalition. However, we show that if these
conditions on preferences are weakened slightly (for instance, symmetry is
weakened to mutuality where any two players have values of the same sign
for each other, but not necessarily of the same magnitude), then the set of
individually stable coalition structures can be empty.
Next, we consider preferences that depend on some underlying summary

characteristic of a coalition, and where players have single-peaked prefer-
ences over these summary characteristics. Examples that fit into the setting
we examine include situations where players care only about the size of
their coalitions, but not about the identities of the members of the coalition,
or where a coalition takes a median vote over a level of a public good to
produce and players care only about that choice of the coalition. Somewhat

6This same hedonic model is independently examined by Banerjee, et al. (2001). Through
a series of very interesting results and examples, Banerjee, et al. (2001) show that there are
nontrivial settings where core stable coalition partitions exist, but also many natural settings
where they do not. We discuss their conditions and some others in Section 4.

7These and other examples are discussed by Drèze and Greenberg (1980), to which we
direct the reader for additional motivation.
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surprisingly, even when preferences are anonymous and single-peaked, the
set of Nash stable outcomes can be empty. Nevertheless, these requirements
guarantee the existence of an individually stable coalition partition and we
provide an algorithm for identifying such a partition. Moreover, we show
that the partitions that the algorithm identifies are weakly Pareto efficient
as well as individually stable. We go on to show that single-peakedness of
preferences is important to the existence of an individually stable coalition
partition.
Towards the end of the paper, we also discuss an even weaker notion of

stability called contractual individual stability, again adapted to the purely
hedonic model from a notion of Drèze and Greenberg (1980) that applied
to nonhedonic models. We conclude with some examples and remarks
regarding other axiomatic properties in hedonic coalition formation, such
as strategy-proofness, envy-freeness, and population monotonicity.

2. A COMPARISON OF THE HEDONIC AND
NONHEDONIC SETTINGS

It is useful to begin our discussion with a look at an example that high-
lights the differences between the hedonic and nonhedonic settings and
offers motivation for some of our analysis. It is a standard Tiebout-style
local public good model.
A set N = �1� � � � � n� of players is divided into coalitions. Each coalition

selects a level of public good to consume. Public good consumption is local
and so a player consumes only the public good produced by her coalition.
What is feasible for a coalition depends on its size. A coalition S ⊂ N can
produce any amount of public good in �0�#S�. So, each member of the
coalition brings a unit of the public good to the coalition and there is free
disposal. Let individuals have single-peaked preferences, denoted �i, over
the amount of public good that they consume, with each individual’s peak
lying in �0� n�.8
First, let us consider a standard nonhedonic version of this setting. In

the spirit of Greenberg and Weber (1993) and Demange (1994), let an
“outcome” be a partition � of N and a specification of a public good
choice cS ∈ �0�#S� for each S ∈ �. An outcome �� c is core∗ stable if it
cannot be improved upon by any coalition.9 That is, �� c is core∗ stable if

8For a formal definition of any concept, such as single-peakedness, that is not familiar, see
under Definitions and Notations.

9The ∗ on core stability distinguishes this notion from the hedonic one that we will use in
this paper.
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for any S′ ⊂ N and cS′ ∈ �0�#S′� there exists i ∈ S′ with cSi �i cS′ , where
Si is the element of � containing i.
If preferences are continuous, then it follows from the results of

Greenberg and Weber (1993) (see also Demange, 1994) that there exists
an outcome that is core∗ stable.
Next, let us turn to a hedonic version of the model. Suppose that the

manner in which a coalition S chooses cS is by a median vote of its members
over �0�#S�. For simplicity, if there is an even number of voters then choose
the lower of the two medians. The model is now purely hedonic: once a
coalition is specified then its members can predict the choice of public good
that will be selected by the median vote, assuming that players follow their
dominant strategies of voting for their most preferred public good level in
�0�#S�. So, each player’s induced preferences over coalitions depend only
on the membership of the coalitions and are thus purely hedonic.
We can now define the core stability notion for the hedonic setting. Let

m�S� denote the median voting outcome for coalition S over �0�#S� as
described above. We can define preferences over coalitions by saying that
S �i S

′ if and only if m�S� �i m�S′�. A coalition partition � is core stable in
the hedonic model if for every S′ ⊂ N there exists i ∈ S′ such that Si �i S

′,
where Si is the element of � containing i.
In contrast with the nonhedonic version of the model, there does not

always exist a core stable partition, as we show in the following example.10

Example 1. Let n = 7 and have players’ preference peaks over levels
of the public good be p1 = p2 = 4, p3 = 5, and p4 = p5 = p6 = p7 = 7.
Also, players 1 and 2 prefer 3 units to 5 units of the public good, and 6
units to 2 units. Player 3 prefers 3 units to 6 units and 6 units to 2 units.
In the nonhedonic version of the model, ��� c� = ��N�� 5�—all players

grouped together and consuming 5 units of the public good is a core∗ stable
outcome.
In the hedonic version of the model, however, there does not exist a core

stable partition. To see this, note that a partition must have a group with at
least 5 members in order to be core stable or else the partition is blocked
by �3� 4� 5� 6� 7�. Any partition that contains a group of 6 or more members
and contains all of �4� 5� 6� 7� will have the large group produce m�S� ≥ 6
and will be blocked by �1� 2� 3� which will have m�S� = 3. A partition
that contains a group of 6 players and leaves one of �4� 5� 6� 7� single,
will be blocked by the single player together with players 1 and 2. So a
core stable partition must consist of a group of 5 and a group of 2. The

10See Haeringer (2000) for an examination of a related model where players care about
both the size and choice of a coalition. He provides conditions on preferences sufficient for
the existence of core-like and Tiebout (Nash) stable coalition structures.
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partition ��1� 2�� �3� 4� 5� 6� 7�� is blocked by �1� 2� 4� 5� 6� 7�. Thus, a core
stable partition would have to be of the form �S1� S2� with #S2 = 5 and
�1� 2� ∩ S2 �= �. Without loss of generality, consider a partition where 1 ∈
S2. This is blocked by S1 ∪ �1�, and so no partition is core stable.

The above example shows that the hedonic model where a coalition’s
actions are predicted has different properties than the nonhedonic model.11

For the Greenberg and Weber allocation to be stable, the coalition must be
able to commit not to choose according to median voting. In this example,
which of the analyses would be appropriate would depend on the method
by which coalitions choose the level of public good.
While there does not always exist a core stable partition in the hedonic

version of the model above, there always exists an individually stable parti-
tion, as we shall prove below. Individual stability only considers blocking by
coalitions that are formed by having one player leave her current coalition
and join another coalition in the partition (or move to be single). In the
example above, an individually stable partition is ��1� 2�� �3� 4� 5� 6� 7��.
Player 3 is worse off if 1 or 2 join the larger coalition, and so closes
the larger coalition to their entrance, and no player in the larger coali-
tion wishes to join 1 and 2. Moreover, this partition is Pareto optimal.

3. DEFINITIONS AND NOTATION

The core and Nash stability definitions provided below are based on stan-
dard definitions in the literature, while individual stability definitions below
are adapted from Greenberg (1978) and Drèze and Greenberg (1980).12

Consider a finite set of players N = �1� � � � � n�.
A coalition partition is a set � = �Sk�Kk=1 that partitions N . Thus, Sk ⊂ N

are disjoint and ∪K
k=1Sk = N . The subsets Sk are called coalitions.

Each individual has preferences over possible coalition partitions which
are entirely determined by the coalition that she belongs to. Thus, a player
i’s preferences can be represented by an order �i (a complete, reflexive, and
transitive binary relation) over the set �Sk ⊂ N � i ∈ Sk�. We let �i denote
the associated asymmetric binary relation.
Given � and i, let S��i� denote the set Sk ∈ � such that i ∈ Sk.
A game �N��� is a set of players and a profile of preferences.

11To note a further difference between the models, there always exists a Nash stable out-
come in the nonhedonic version (which again can be derived from the results of Greenberg
and Weber, 1993; or Demange, 1994), but one can find hedonic examples where there do not
exist Nash stable partitions, as we shall see below.

12The hedonic model we define here is independently studied by Banerjee, et al. (2001)
who focus on core stability, as discussed in the next section.
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Properties of Preferences

A player i’s preferences are additively separable if there exists a function
vi � N → � such that ∀ S1� S2 � i

S1 �i S2 ⇔ ∑
j∈S1

vi�j� ≥ ∑
j∈S2

vi�j��

where, without loss of generality, we normalize by setting vi�i� = 0.
A profile of additively separable preferences, represented by �v1� � � � � vn�,

satisfies symmetry if vi�j� = vj�i�, ∀ i� j.
A profile of additively separable preferences, represented by �v1� � � � � vn�,

satisfies mutuality if vi�j� ≥ 0 ⇐⇒ vj�i� ≥ 0. Thus, symmetry implies
mutuality.
A player i’s preferences satisfy anonymity if ∀ S1� S2 � i

#S1 = #S2 ⇒ S1 ∼i S2�

where #S denotes the size of a coalition S.
A player i’s preferences on some set �0� 1� � � � �K�13 are single-peaked if

there exists a number pi, called i’s peak, such that ∀ s1� s2 ∈ �0� 1� � � � �K�
�s1 < s2 ≤ pi or s1 > s2 ≥ pi� ⇒ s2 �i s1�

As an example, i’s preferences might depend only on the size of the coali-
tion that i is a member of and might be single-peaked on size.

Efficiency

A coalition partition � is weakly Pareto efficient if for any partition �′ �=
� there exists a player i such that S�′ �i� �= S��i� and S��i� �i S�′ �i�.
In this version of weak Pareto efficiency, a coalition partition offers

improvement over another if all players whose coalitions change are made
strictly better off. The restriction of attention to players whose coalitions
have changed makes this definition stronger than the usual definition of
weak Pareto efficiency. If players’ preferences are strict, then weak Pareto
efficiency coincides with Pareto efficiency.

Stability Concepts

A coalition partition � is core stable (or in the core) if � ∃T ⊂ N such that
T �i S��i� for all i ∈ T .
When a coalition partition � is not core stable, so that ∃T ⊂ N such that

T �i S��i� for all i ∈ T , we say that T blocks �.

13We are vague about the set underlying preferences in this definition, as we will apply the
notion of single-peakedness to several different underlying domains.



208 bogomolnaia and jackson

A coalition partition � is Nash stable if ∀ i S��i� �i Sk ∪ �i� for all Sk ∈
� ∪ ���.
A coalition structure � is individually stable if there do not exist i ∈ N

and a coalition Sk ∈ �∪ ��� such that Sk ∪ �i� �i S��i�, and Sk ∪ �i� �j Sk
for all j ∈ Sk.
In line with individual stability, a coalition is said to be open if there is

some player that could be added to the coalition without making any of the
current members worse off, and a coalition is said to be closed, otherwise.
A coalition structure � is contractually individually stable if there do not

exist i ∈ N and a coalition Sk ∈ � ∪ ���, such that Sk ∪ �i� �i S��i�,
Sk ∪ �i� �j Sk ∀ j ∈ Sk; and S��i�\�i� �j S��i� ∀ j ∈ S��i�\�i�.
Note that individual stability implies individual rationality, since nobody

wants to leave her current coalition and stay alone.
The relation between the stability concepts is indicated below, where ⇒

indicates that if a partition satisfies the first notion, then it also satisfies the
second.
Individual stability ⇒ contractual individual stability.
Nash stability ⇒ individual stability ⇒ contractual individual stability.
However, core stability �⇒ Nash stability �⇒ core stability.
Also, core stability �⇒ individual stability, because our core stability

notion is the one of weak core.
The following examples illustrate these relationships.

Example 2. An undesired guest.14 Let N = �1� 2� 3� and

�1� 2� �1 �1� �1 �1� 2� 3� �1 �1� 3��
�1� 2� �2 �2� �2 �1� 2� 3� �2 �2� 3��
�1� 2� 3� �3 �2� 3� �3 �1� 3� �3 �3��

These orderings can be represented by additively separable utilities. Here,
��1� 2�� �3�� is in the core and is individually stable, while the set of Nash
stable partitions is empty since 3 would like to join with 1 and 2, who would
then prefer to be alone.

Example 3. Two is company, three is a crowd. Let N = �1� 2� 3� and

�1� 2� �1 �1� 3� �1 �1� 2� 3� �1 �1��
�2� 3� �2 �2� 1� �2 �1� 2� 3� �2 �2��
�3� 1� �3 �3� 2� �3 �1� 2� 3� �3 �3��

14Drèze and Greenberg (1980) consider a different example by the same name.
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These preferences have a cycle: the first player prefers the second player to
the third, the second player prefers the third player to the first, and the third
player prefers the first one to the second. All players prefer to be in some
couple over being all together, and being alone is the worst outcome. Here,
the core is empty, while ��1� 2� 3�� is the unique Nash stable partition, as
well as being the unique individually stable partition.

Example 4. Let N = �1� 2� 3� and

�1� 2� �1 �1� 3� �1 �1� �1 �1� 2� 3��
�2� 3� �2 �2� 1� �2 �2� �2 �1� 2� 3��
�3� 1� �3 �3� 2� �3 �3� �3 �1� 2� 3��

This is similar to the previous example except that staying alone is better
than being in the grand coalition. Here, there does not exist a core stable,
Nash stable, or individually stable coalition partition. Nevertheless, there
are three contractually individually stable coalition structures: ��1� 2�� �3��,
��1� 3�� �2��, and ��2� 3�� �1��.

4. CORE STABILITY

Before moving to the main focus of our analysis on individual stability,
we provide some idea of what one can say about the existence of core stable
partitions.
As mentioned in the Introduction, Banerjee et al. (2001) identify two con-

ditions, the top coalition and the weak top coalition property, that are suf-
ficient for the existence of a core stable partition in the hedonic model. In
addition to those conditions, one can easily adapt conditions from the NTU
cooperative game literature that are distinct from their weak top coalition
property. These conditions capture applications, such as multi-sided match-
ing problems, that are not captured by the weak top coalition property. We
state each of these conditions and then show that they are all distinct.
In order to state the first two conditions, note that the hedonic setting

can be thought of as an NTU game where the allocations of a coalition are
unique. This is more formally stated as follows.
Consider a hedonic game �N���. Choose a profile of utility functions

�ui�i∈N on the set of coalitions such that ui�S� > ui�T � if and only if
S �i T . Define the following NTU game. For each S �= N let

V �S� = �x ∈ �n � xi ≤ ui�S� ∀ i ∈ S��
and let

V �N� = �x ∈ �n � ∃� s�t� xi ≤ ui�S��i�� ∀ i��
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It is clear that the core of this NTU game15 is nonempty if and only if there
exists a core stable coalition partition for �N���.
With this observation, one can adapt conditions from the NTU setting to

the hedonic setting.

Ordinal Balance

The first condition builds directly on a theorem of Scarf (1967).
A collection of coalitions � is balanced if there exists a vector of positive

weights dS , such that for each player i ∈ N
∑

S∈��i∈S dS = 1.
A game �N��� is ordinally balanced if for each balanced collection of

coalitions � there exists a coalition partition � such that for each i there
exists S ∈ � with i ∈ S such that S��i� �i S.
Thus, a game is ordinally balanced if for each balanced family of coali-

tions there exists some coalition partition such that each player prefers her
coalition in the partition to her worst coalition in the balanced family.

Consecutiveness

The following definitions are adaptations of corresponding definitions for
NTU games by Greenberg and Weber (1986) and Greenberg (1994).
An ordering of players is a bijection f � N → N .
A coalition S ⊂ N is consecutive with respect to an ordering f , if f �i� <

f �j� < f �k�, i ∈ S, and k ∈ S imply j ∈ S.
A game �N� ��i�i∈N� is weakly consecutive if there exists an ordering of

players, f , such that whenever � is defeated by some T , there exists T ′ that
is consecutive with respect to f that defeats �.
A game �N� ��i�i∈N� is consecutive if there exists an ordering of play-

ers, f , such that S �i �i� for some i implies that S is consecutive with
respect to f .
A partition � is consecutive with respect to an ordering f , if each S ∈ � is

consecutive with respect to f .

Theorem 1 (Adapted from Scarf, 1967; and Greenberg, 1994). 16 If a
game is ordinally balanced, then there exists a core stable coalition partition. If
a game �N��� is weakly consecutive with respect to an ordering f , then there
exists a core stable coalition partition that is consecutive with respect to f .

15A point x is in the core of V if x ∈ V �N� and there does not exist a nonempty S and
y ∈ V �S� such that yi > xi for all i ∈ S.

16Greenberg and Weber (1986) show that consecutiveness is sufficient for core existence
in NTU games. Greenberg (1994), in discussing the Greenberg and Weber result, states
consecutiveness in the form which corresponds to weak consecutiveness here, and correctly
claims that it is sufficient for existence. The difference between these conditions is nontriv-
ial as we shall see below that the top-coalition property implies weak consecutiveness but not
consecutiveness.
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Let us now examine the relationship between the various sufficient con-
ditions for the existence of core stable coalition partitions. The following
properties are shown to be sufficient for the existence of a core stable coali-
tion partition by Banerjee et al. (2001).
Given a nonempty set of players V ⊂ N , a nonempty subset S ⊂ V is

a top coalition of V if for any i ∈ S and any T ⊂ V with i ∈ T we have
S �i T . A game satisfies the top-coalition property if for any nonempty set
of players V ⊂ N , there exists a top coalition of V .
Given a nonempty set of players V ⊂ N , a nonempty subset S ⊂ V

is a weak top coalition of V if it has an ordered partition �S1� � � � � S��
such that (i) for any i ∈ S1 and any T ⊂ V with i ∈ T we have S �i

T and (ii) for any k > 1, any i ∈ Sk, and any T ⊂ V with i ∈ T , we
have T �i S ⇒ T ∩ �∪m<kS

m� �= �. A game satisfies the weak top-coalition
property if there exists a partition � = ��1� � � � � �K� of N , such that for
each k ∈ �1� � � � �K�, �k is a weak top coalition of N/�∪k′<k�k′ �.
The following proposition outlines the relationship between these top-

coalition properties, and the ordinal balance and the weak consecutive
properties defined above.

Proposition 1. A game that satisfies the top-coalition property is weakly
consecutive, if players’ preferences are strict. The weak top-coalition property,
the weak consecutive property, and the ordinal balance property are completely
distinct (even with strict preferences): for any given property there exists a game
that satisfies the given property but fails to satisfy the other two.

The relationship missing from the above proposition is the relationship
between the top-coalition property and ordinal balance. The top-coalition
property does not necessarily imply ordinal balance, which can be seen
through game 5 in Banerjee et al. (2001).

Proof of Proposition 1. Suppose that a game satisfies the top-coalition
property. We show that it is weakly consecutive. Identify a top-coalition of
N . Call it S1. Identify a top coalition of N/S1, call it S2, and so on, defin-
ing S3� � � � � SK in this manner. Define the ordering f , by assigning values
1� � � � �#S1 to the members of S1 (in any order—so that f �i� ∈ �1� � � � �#S1�
for each i ∈ S1). Assign values #S1 + 1� � � � �#S1 + #S2 to the members of
S2, and so on. Now, consider any � that is blocked by some S. It must
be that � �= �S1� S2� � � � � SK�, as that is clearly a core stable partition. So,
find the lowest index k such that Sk /∈ �. Since Sk is a top coalition of
N/ ∪j<k Sj , it follows that � is blocked by Sk, which is consecutive under
the ordering f .
The following example is of a game that is weakly consecutive, but

does not satisfy the weak top-coalition or ordinal balance properties.
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Let N = �1� 2� 3� and

�1� 2� �1 �1� 3� �1 �1� �1 �1� 2� 3��
�1� 2� 3� �2 �2� 3� �2 �1� 2� �2 �2��
�1� 2� 3� �3 �2� 3� �3 �1� 3� �3 �3��

This is weakly consecutive when f is set by the identity, since the
only coalition that is not consecutive, �1� 3�, only blocks the partition
��1�� �2�� �3��, which is also blocked by �1� 2�.
This game does not satisfy the weak top-coalition property as there is

no weak top coalition of N . The only candidates are (i) �1� 2� 3�, which
cannot be a weak top coalition since player 1 prefers �1� and thus cannot
be put in the necessary ordered partition of �1� 2� 3� in the definition, and
(ii) �1� 2� which cannot be a weak top coalition since player 2 can form a
better coalition with player 3.
This game does not satisfy ordinal balance relative to the balanced family

of coalitions � = ��1� 2�� �2� 3�� �1� 3��. Any partition with at least one
singleton player cannot make the singleton player as well off as in the
coalitions in �, and the only other partition is ��1� 2� 3��, which leaves
player 1 worse off than in the coalitions in �.
The following game satisfies the weak top-coalition property, but is not

weakly consecutive and does not satisfy the ordinal balance condition. Let
N = �1� 2� 3� and

�1� 2� 3� �1 �1� 2� �1 �1� 3� �1 �1��
�2� 3� �2 �1� 2� �2 �1� 2� 3� �2 �2��
�1� 3� �3 �1� 2� 3� �3 �2� 3� �3 �3��

First, we check that the game satisfies the weak top-coalition property.
A weak top coalition of N is �1� 2� 3� with corresponding partition S1 =
�1�, S2 = �3�, and S3 = �2�. A weak top coalition of any V that is a strict
subset of N is simply V with S1 = V .
Second, we check that this game is not weakly consecutive. The only

coalition that blocks ��1� 2�� �3�� is �2� 3�. The only coalition that blocks
��1� 3�� �2�� is �1� 2�. The only coalition that blocks ��2� 3�� �1�� is �1� 3�.
There is no f for which each of these blocking coalitions is consecutive.
Third, we check that this game is not ordinally balanced. Consider the

balanced family � = ��1� 2�� �2� 3�� �1� 3��. No partition that has any
player remaining single can satisfy the requirement of ordinal balance rel-
ative to this � since remaining single is least preferred for all players.
The only possibility is then the partition ��1� 2� 3��. However, player 2
prefers both �1� 2� and �2� 3� to �1� 2� 3�, and so ordinal balance cannot
be satisfied.
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Finally, the following game satisfies ordinal balance, but is not weakly
consecutive nor does it satisfy the weak top-coalition property. Let N =
�1� 2� 3� with preferences:

�1� 2� �1 �1� 2� 3� �1 �1� 3� �1 �1��
�2� 3� �2 �1� 2� 3� �2 �1� 2� �2 �2��
�1� 3� �3 �1� 2� 3� �3 �2� 3� �3 �3��

To see that the above game satisfies ordinal balance, notice that the only
balanced families for which the partition ��1� 2� 3�� does not satisfy the
condition have some pair of players in only one coalition. Thus, they are of
the form � = ��i� j�� �k��, which is in fact a partition.
To see that the above game is not weakly consecutive (given the symmetry

of preferences) set f �1� = 1� If f �2� = 2, then there is no consecutive
blocking coalition to the partition ��2� 3�� �1��, as only �1� 3� blocks. If
f �3� = 2, then there is no consecutive blocking coalition to ��1� 3�� �2��,
as only �1� 2� blocks.
To see that the game fails the weak top-coalition property, notice that

the only candidates for a weak top coalition of N are coalitions of size 2.
Without loss of generality, given the symmetry, consider the coalition �1� 2�.
This is not a weak top coalition since 2 can form a better coalition with 3.

5. THE EXISTENCE OF NASH AND INDIVIDUALLY
STABLE PARTITIONS

While there are hedonic settings where there exist core stable partitions,
we have already seen from the example in Section 2 there are interest-
ing settings where there are no core stable partitions. There are settings of
interest where, despite the non-existence of core stable partitions, there
exist coalition partitions that are immune to various sorts of individual
movements.

Proposition 2. If players’ preferences are additively separable and sym-
metric, then an individually stable coalition partition exists. Moreover, a Nash
stable coalition partition exists.

Proof. It is clear that Nash stability implies individual stability. There-
fore, we demonstrate the existence of a Nash stable coalition partition.
Let vij be a value of player i for player j, and so by symmetry vij =

vi�j� = vj�i�. Player i has an incentive to move from S��i� to Sk, whenever∑
j∈Sk

vij >
∑

j∈S��i�
vij�
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recalling the normalization that vii = 0. So, consider a coalition structure
� and the sum ∑

ij�∃S∈��ij∈S
vij�

If i has an incentive to move from S��i� to Sk, then by symmetry the above
sum for the resulting partition �′ would be higher than that for the parti-
tion � by

∑
j∈Sk vij − ∑

j∈S��i� vij . Therefore, any coalition structure which
maximizes the above sum is Nash stable. Such a maximizer exists given the
finite number of possible partitions.

The proof of Proposition 2 uses symmetry in a critical way. There may
fail to exist a stable coalition partition if symmetry is weakened to mutu-
ality, even when preferences are additively separable and mutual. As an
easy example of nonexistence of a Nash stable coalition partition with such
preferences let N = 3 and v1�2� = 2, v2�1� = 1, v1�3� = −1, v3�1� = −2,
v2�3� = 2, v3�2� = 1. The next example shows that an individually stable
coalition partition may fail to exist even when preferences are additively
separable, mutual, and single peaked on a tree. This example is adapted
from one in Banerjee et al. (2001) where they show nonexistence of a core
allocation.

Example 5. Let N = �1� � � � � 5� and have players’ form a cycle such
that each player likes the previous player a little, the following player a lot,
and hates other players. For instance, let vi�i − 1� = 1� vi�i + 1� = 2, and
vi�i − 2� = vi�i + 2� = −4 (where if i = 5 then i + 1 = 1 and if i = 1 then
i− 1 = 5). Any coalition partition which includes a coalition that has players
who hate each other is not individually stable as it is not individual rational.
Thus, the only possible coalitions are of size one or two, where coalitions
of size two must contain consecutive players. Note that any consecutive
players who are alone would prefer to merge in a coalition, and so the only
candidate for an individually stable coalition partition would be (without
loss of generality, because of the symmetry of preferences) �1� 2�� �3� 4�,
and �5�. This is not individually stable since 4 prefers to join 5, who would
accept her.17

While the domain of additively separable and symmetric preferences is
of some interest, it is a very limited one. For instance, it does not capture

17As noted by Banerjee et al. (2001), the preferences in this example fail to be single-peaked
on a tree but are easily extended to be such. Add players 6 and 7 such that 6 likes everybody
(vi�6� = v6�i� = 3 for i ≤ 5); 7 hates everybody except 6 (vi�7� = v7�i� = −100 for i ≤ 5);
and 6 and 7 really like each other (v6�7� = v7�6� = 20). Then any individually stable partition
must contain �6� 7�, and the situation is reduced to the previous example. Preferences are
single-peaked on a star-shaped tree with player 6 at the center.
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the setting we discussed in Section 2 surrounding Example 1. We now turn
to a domain that includes the local public good setting of Example 1 as a
special case. We provide a proof of the existence of an individually stable
(and weakly Pareto efficient) coalition partition for this domain.

Ordered Characteristics

Each coalition S �= � is described by a characteristic or choice c�S� that
lies in �0� 1� � � � �#S�.
Players have single-peaked preferences on �0� 1� � � � � n�, with peaks

denoted pi and pi ≥ 1. Their preferences over coalitions correspond sim-
ply to the preference ranking of c�S�. So, if i ∈ S and i ∈ S′, then S �i S

′

if and only if c�S� �i c�S′�.18
A hedonic game has ordered characteristics if players’ preferences over

coalitions depend on single-peaked preferences over coalitional choices,
where the choice function c�S� satisfies the following conditions:

(i) If c�S� < #S, then c�S� = pj for some j ∈ S, and

(ii) If i /∈ S, j /∈ S, and pi ≥ pj , then c�S ∪ i� ≥ c�S ∪ j�. Moreover,
if c�S ∪ i� > pi, then c�S ∪ i� = c�S ∪ j�.
Condition (i) says that if a choice is not capacity constrained, then it must

choose the peak of some player. The first part of condition (ii) says that
when comparing coalitions that differ by the identity of exactly one of the
players, the choices of the coalitions are ordered by the peaks of the players
who differ. The second part of (ii) states that the difference between these
players cannot matter if a player with a peak smaller then the coalitional
choice is replaced by another player with a peak not higher than hers.
Both (i) and (ii) are violated if c�S� is taken as some weighted average of

the peaks of coalition members (and indeed such situations fail existence),
but are satisfied if it is based on some order statistic of the peaks.
Illustrative examples of settings having ordered characteristics are as fol-

lows.

(1) Players’ preferences are anonymous and single-peaked on the size
of the coalition to which they belong.

(2) As in Section 2, players have preferences over a choice of a level
of public good and c�S� = min�#S�mediani∈S�pi��, with a deterministic tie
break if the coalition has an even number of members. (Any order statistic
other than median, such as max or min, would also work.)

18Haeringer (2000) explores a model where symmetric players have preferences that depend
simultaneously on the size of their coalition and the choice of the coalition.
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Consistency

While the ordered characteristics condition places structure on the
choices of coalitions, it still allows for some inconsistencies in how those
choices may be made across different coalitions. For instance, consider the
case where the choice is equal to the full capacity of the coalition, except
when there are precisely 5 players in the coalition in which case it is the
minimum peak. That is, consider c�S� = #S if #S �= 6 but c�S� = mini∈S pi

if #S = 6. This satisfies the ordered characteristics condition, but makes
life difficult in terms of finding an individually stable and Pareto efficient
coalition partition (see Example 8, below).
A hedonic game that has ordered characteristics is consistent if whenever

there exist i and S such that c�S ∪ i� = pi < c�S� < minj∈S pj , it follows
that c�T ∪ i� ≤ pi for any T .
The consistency condition says that if some player i forces the choice

of a coalition to be below the capacity constraint in a situation where the
capacity constraint already falls below all of the other coalition members’
peaks, then the choice of some other coalition is also no more than i’s peak.
While this is a very minimal sort of consistency condition, it is enough,
under ordered characteristics, to guarantee the existence of an individually
stable and Pareto efficient coalition partition.

Theorem 2. If a hedonic game has ordered characteristics, then there
exists an individually stable coalition partition. If, in addition, consistency is
satisfied, then there exist a weakly Pareto efficient individually stable partition.
Moreover, an algorithm for identifying an individually stable coalition partition
that is weakly Pareto efficient is described below.

We state the algorithm below and provide the proof of Theorem 2 in the
Appendix.
Before proceeding with a formal description of the algorithm, we provide

some examples that illustrate some of the basic points of the algorithm. We
stick to the case where players care only about the size of coalitions, and
c�S� = #S. The first example also shows the contrast with core stability,
as it builds on Example 1 of Banerjee et al. (2001) who show nonexistence
of a core stable coalition partition. As we see here, there does exist an
individually stable and Pareto efficient partition.
The basic idea behind the algorithm is to start by grouping players with

the highest peaks together, until we reach a size that exceeds the peak of
the next player to be added. Then we start forming a new coalition, and so
forth. That will not work in all cases, as we will see in Example 7 below,
but serves as a starting point.



stability of hedonic coalition structures 217

Example 6. There are seven players with the anonymous and single
peaked preferences:

�1=�2 and 4 �1 3 �1 5 �1 6 �1 2 �1 1 �1 7

5 �3 4 �3 3 �3 6 �3 2 �3 1 �3 7

�4=�5=�6=�7 and 6 �4 5 �4 4 �4 3 �4 2 �4 1 �4 7�

We begin by creating a first coalition by adding player 7, then 6, 5, 4, and
then 3. Player 3 closes the coalition, since the coalition size is 5 and that
is 3’s peak. Next we form a second coalition by grouping 1 and 2 together.
The resulting coalition is �1� 2�� �3� 4� 5� 6� 7� and it is individually stable
and weakly Pareto optimal.
Note that there is an interesting implication of Theorem 2, which is illus-

trated in the context of the above example. The core stable existence prob-
lem arises because of instability with respect to intermediate sized coalitions.
We know from Theorem 2 that there exist coalition partitions that are sta-
ble with respect to both changes by single players and rearrangements made
by the grand coalition. In Example 6, it is a coalition of players 1 and 2
joining with 4 to 7 that upsets core stability.
We now show some adjustments that are necessary in the basic process

described above to develop the algorithm.

Example 7.

p1 = 2 and 5 �1 1

p2 = p3 = p4 = 3 and 1 �4 4

p5 = p6 = p7 = p8 = 5�

Here, beginning by grouping the players with the largest peaks we form
�5� 6� 7� 8�. Players 2, 3, and 4 prefer not to go to this largest group so
we next form �2� 3� 4� which gives them each their peak. Next we are left
with a singleton �1�. We have to allow 1 to join �5� 6� 7� 8�, as the parti-
tion is not individually stable as it is, and so we end up with the partition
��2� 3� 4�� �1� 5� 6� 7� 8��. So the algorithm should allow for players to move
up to larger coalitions if they are in a coalition smaller than their peak size.

The Algorithm

Order players from 1 to n in increasing order of their peaks. So, i ≥ j
implies pi ≥ pj . Order players with the same peaks in any way.

Step 1. Form a coalition S1 by adding player n. Next, add player n− 1
if pn−1 ≥ c��n − 1� n��. Continue to add players in the reverse order of
their labels and add players iteratively as long as pk ≥ c��k� � � � � n�� and
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�k+ 1� � � � � n� is open to k. Stop and do not add player k− 1 when pk−1 <
c��k − 1� � � � � n�� or if �k� � � � � n� is closed to k − 1. Call the resulting
coalition S1. Proceed to Step 2.

Step 2. Form a coalition S2 in the same manner from the remaining
players, starting with player k − 1 who was not added in Step 1. If S1 is
closed then proceed to Step 3. If S1 is open to some players, then see if the
highest indexed player in S2 would be made better off by moving to S1 (i.e.,
c�S1 ∪ i� �i S2). If so, and if S1 is open to i (so c�S1 ∪ i� �j c�S1� for all
j ∈ S1) then move the player to S1. Otherwise ask the same question of the
next highest player in the S2 and so on until either some player is moved,
or all players in S2 have been considered. If no player for whom S1 is open
would be made better off by moving, then see if there is a player who is
indifferent to moving for whom S1 is open and move the highest indexed
such player. If a player is moved from S2 to S1, then see if there is a player
i who is not yet in a coalition such that pi ≥ c��S2 ∪ i�� and S2 is open to i
(taking S2 in its current form—so without the player who joined S1). If so,
add the player to S2. Iterate on this procedure, until no players are moved
and no players are added to S2. Proceed to Step 3.

Step 3. Iterate on the procedure described in Step 2 with the remain-
ing players. After creating a new coalition, there may be several open coali-
tions when considering moving players. In that case begin with the next
highest indexed open coalition. Continue the process of trying to move
players as described in Step 2 (and replacing any moved player) until all
players would be hurt by moving to any lower indexed coalition that is open
to them. Then create a new coalition with players not yet assigned to any
coalition. Stop when all players are assigned to a coalition and all players
would be hurt by moving to any lower indexed coalition that is open to
them.

The consistency property is nonredundant in showing the weak Pareto
optimality of a partition constructed by our algorithm. The following exam-
ple shows that under ordered characteristics, but without consistency, it is
possible for the algorithm to find an individually stable but inefficient coali-
tion partition.

Example 8. There are eight players. Players 1 to 5 have peak at 8, while
players 6 to 8 have peak at 4 and prefer more to less. The coalition choice
c�·� is defined as

c�S� =
{
#S� if #S �= 6,
min�#S!pi� i ∈ S�� if #S = 6.

The algorithm from Theorem 2 gives the partition S1 = �1� 2� 3� 4� 5�, S2 =
�6� 7� 8�, while S = �1� � � � � 8� is Pareto superior to it.
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We make some further remarks on Theorem 2. These are illustrated with
examples for the special case where c�S� = #S, so players care only about
the size of their coalition.
Even under consistency, Theorem 2 does not imply that all individu-

ally stable coalition partitions are (weakly) Pareto optimal. The following
example shows that this is not the case, and so the algorithm is impor-
tant in selecting an individually stable coalition partition that is also Pareto
optimal.

Example 9. There are eight players with anonymous and single peaked
preferences over the size of their coalition. Players 1 through 4 have a peak
at 2, and players 4 through 8 have peaks at 4. In this case the algorithm
in the proof of Theorem 2 finds the Pareto optimal and individually stable
(and core stable) coalition partition which is unique up to a relabeling of
the players. It is �1� 2�� �3� 4�� �5� 6� 7� 8�.
Another individually stable coalition partition is �1� 5�� �2� 6�� �3� 7�,

�4� 8�. This is Pareto dominated (in a strict sense) by the partition above.

The next example shows that Theorem 2 does not hold beyond the
ordered characteristics condition. Without that condition it is possible to
find preference profiles for which the individually stable coalition partitions
and the (weakly) Pareto efficient ones are disjoint.

Example 10. There are four players with the following preferences:
134 �1 12 �1 124 �1 14 �1 13 �1 1234 �1 123 �1 1

12 �2 124 �2 23 �2 1234 �2 24 �2 234 �2 123 �2 2

23 �3 134 �3 34 �3 13 �3 1234 �3 234 �3 123 �3 3

134 �4 34 �4 124 �4 14 �4 24 �4 1234 �4 234 �4 4�
It is easily checked that �1� 2� 3� 4� is the unique individually stable parti-

tion. However, it is not Pareto optimal, since everybody prefers the partition
�1� 2�� �3� 4�.
Next, we show that Theorem 2 does not extend to Nash stability. There

may not exist a Nash stable coalition partition, even if preferences are
anonymous and single-peaked over size of coalition. A trivial example can
make this point: have two individuals with �1� 2� �1 �1� and �2� �2 �1� 2�.
The following example shows that this is also true in less degenerate cases.

Example 11. Consider N = �1� 2� 3� 4�, and the anonymous, single-
peaked preferences over coalition sizes described by

4 �1 3 �1 2 �1 1�

3 �2 2 �2 1 �2 4�

2 �3 3 �3 1 �3 4�
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and

2 �4 3 �4 1 �4 4�

There does not exist a Nash stable coalition partition:

— the partition ��1� 2� 3� 4�� is not Nash stable as player 4 prefers
to be alone;

— a partition of the form ��a� b� c�� �d�� is not Nash stable as play-
ers 3 and 4 like size 2 better than size 3 and one of them must belong to
�a� b� c� and thus would prefer to leave and join d;

— a partition of the form ��a� b�� �c� d�� is not Nash stable as player
1 would like to switch coalitions since she prefers size 3 to size 2;

— a partition of the form ��a� b�� �c�� �d�� is not Nash stable as
player c (regardless of identity) would prefer to join the coalition �a� b�;

— the partition ��1�� �2�� �3�� �4�� is not Nash stable as any player
prefers to form a couple with another player.

It is interesting to remark that unlike many models where single-
peakedness is postulated (e.g., median voting in public goods environments
and uniform allocations in allotment problems), we need information about
players’ preferences beyond knowing what their peaks are in order to con-
struct a stable coalition partition. This is demonstrated in the following
example.

Example 12. Let n = 4, p1 = 2, and pi = 4 for i ∈ �2� 3� 4�.
If player 1 prefers size 4 to size 1, then ��1� 2� 3� 4�� is the only individ-

ually stable coalition partition.
If player 1 prefers size 1 to size 4, then ��1�� �2� 3� 4�� is the only indi-

vidually stable coalition partition.

Next, we show that single-peakedness is important in establishing
Theorem 2. Although it can be checked that for n ≤ 7 when players care
only about coalition size, anonymity alone suffices for the existence of
an individual stable coalition partition, this is not true for larger n. The
following example with n = 63 is the smallest example that we know of
where anonymity of preferences does not suffice for the existence of an
individually stable coalition partition.

Example 13. Let n = 63. Anonymous preferences over coalition size
are described below, where the argument is the size of the coalition,

57 �1 2 �1 7 �1 6 �1 1 �1 remaining sizes.

7 �2 2 �2 57 �2 56 �2 1 �2 remaining sizes.

2 �3 7 �3 6 �3 1 �3 remaining sizes.
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For players 4 to 8, 7 �4 6 �4 5 �4 4 �4 3 �4 2 �4 1 �4 remaining sizes.
For players 9 to 63, single peaked with peak at 63.
We verify that there is no individually stable partition.

Claim 1. Any candidate individually stable coalition structure must have
players 9 to 63 together (possibly with others, too). Call this S1.

Proof of Claim. Note from the preferences that any coalition that is
closed (and that is preferred to staying alone by all its members) must
be of size 57 or less than size 7. Also note that players indexed from 9 up
prefer larger to smaller, so they must all be in the largest coalition if one
of the largest coalitions is open, and then this must be uniquely the largest.
Suppose the claim to be false. Then it must be that all of the largest coali-
tions are closed. If the largest coalition has 57 members, then it must not
contain any of players 3 to 8 and so contains players 9 to 63 as claimed.
So it must be that all the largest coalitions are closed and of size 7 or less.
Any closed coalition of size 7 or less must have a player from 1 to 8 in it.
There are at most 8 such coalitions which take up at most 56 players. Thus
there are at least 7 remaining players who are indexed from 9 to 63 and are
together in an open coalition, which thus must have maximal size, which
leads to a contradiction.

Claim 2. Any candidate individually stable coalition structure must have
players 4 to 8 together (possibly with others, too). Call this S2.

As S1 has at least 55 members, there can be at most eight remaining
players in the other coalitions. None of players 4 to 8 can be in S1, as
they would rather be alone. From the preferences it follows that any of the
coalitions other than S1 that are closed (and that are preferred to staying
alone by all its members) must be of size 2 or 7. If none of the largest
coalitions other than S1 are closed, then it must be that all of players 4 to
8 are in it, since they prefer larger to smaller up to a size of 7. If there is a
closed coalition of size 7, and the claim were not true, then there must be
a player indexed 4 to 8 who is alone. However, this could not be as then
player 3 would like to join this single player. Thus, for the claim to be false,
it must be that all of the largest coalitions other than S1 are closed, and
they must all be of size 2 or less. Each such coalition must have a player
indexed 1, 2, or 3 in it and so there are at least 2 players indexed 4 to 8
left. They would be together in an open coalition which is a contradiction.

Claim 3. At most two of players 1, 2, and 3 are in the same coalition.

If all 3 players were in the same coalition then from Claims 1 and 2 it
follows that coalition would be of size 58, 8, or 3. In any one of these cases,
any of the three players would prefer to be alone.
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Claim 4. At least two of players 1, 2, and 3 are in the same coalition.

From Claims 1 to 3 it follows that if they were all separated, then at least
one of them would have to be alone. From the preferences of player 3,
it would have to be only player 3, or else he would join the single player.
Thus, S1 has 56 members, S2 has 6 members, and player 3 is alone. This is
not stable, as both players 1 and 2 prefer 7 members to 56, so whichever
one of them is in S1 should join S2.
Claims 3 and 4 tell us that exactly two of players 1, 2, and 3 are in the

same coalition. Let us now consider separate cases.

Case 1. Players 1 and 2 are both in the same coalition.

If 1, 2 are not in S2, then it must be that 3 is in S2. But then player 2 would
like to join S2 and would be accepted, which violates individual stability. If
1, 2 are in S2, then 3 is alone, but 1 would like to join 3 and would be
accepted, which violates individual stability.

Case 2. Players 2 and 3 are both in the same coalition.

If 2, 3 are not in S2, then it must be that 1 is in S2. But then player 2
would like to join S2, a contradiction. If 2, 3 are in S2, then 1 is alone. But
then 3 would like to join 1, a contradiction.

Case 3. Players 1 and 3 are both in the same coalition.

If 1, 3 are not in S1, then it must be that 2 is in S1. But then player 1
would like to join S1, a contradiction. If 1, 3 are in S1, then 2 is alone. But
then 3 would like to join 2, a contradiction.

The above results and examples show that there are plausible situations
where individually stable coalition partitions exist, but also others where
they do not. Let us briefly examine a less restrictive notion of local sta-
bility: contractual individual stability. This has the nice property of always
existing, but suffers from strong assumptions on the limits of mobility that
players have. Also, as the following proposition demonstrates, contractual
individual stability has an interesting relationship with Pareto efficiency,
which follows the reasoning of Dreze and Greenberg (1980), in a different
context.

Proposition 3. Any Pareto efficient coalition partition is contractually
individually stable. If preferences are strict,19 then there exists a Pareto efficient
and individually rational coalition partition that is contractually individually
stable.

19A player has a strict preference over any two coalition partitions for which her coalition
differs.
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Proof. We first show that any Pareto optimal coalition partition, �, is
contractually individually stable.
Consider any i, S��i�, and Sk ∈ � ∪ �, where S��i� �= Sk. Consider �′

where the only change from � is that i moves from S��i� to Sk. By the
Pareto optimality of �, it follows that either all players are indifferent
between the two partitions, or that some player j is worse off under the
new partition. Since preferences are hedonic, it must be that j ∈ S��i� ∪ Sk.
In either case, this change for i would not be viable under the definition
of contractual individual stability. Since these choices were arbitrary, � is
contractually individually stable.
Next, we show that if preferences are strict then the following algorithm

identifies a Pareto efficient and individually rational coalition partition that
is contractually individually stable.
Start with player 1. Let Ŝ1 be the best coalition for player i1 = 1 subject

to the constraint that no player in the coalition would prefer to be alone.
So Ŝ1 = max�1

�S ⊂ N � 1 ∈ S and S �j �j� ∀ j ∈ S�. Next, let i2 be the
player with the lowest index among N − Ŝ1 and define Ŝ2 to be the best
coalition for player i2 among subsets of N − Ŝ1 such that no player in the
coalition would prefer to be alone, etc. Continuing in this way, define ik
and Ŝk accordingly. It follows from the definition of the algorithm that the
partition �Ŝk� is individually rational. The partition is contractually indi-
vidually stable by the following reasoning. Individual i1 = 1 is in her most
preferred coalition subject to individual rationality, so she will prevent any-
one from leaving it. The only players she would admit to S1 are ones that
would rather remain alone. Given this, similar reasoning applies to each ik
and Sk, successively. A similar argument proves Pareto efficiency: adding
any players to Ŝ1 would make either some added player or player i1 worse
off. Subtracting players from Ŝ1 would make player i1 worse off. Thus, a
Pareto improvement must leave Ŝ1 unchanged. Similar reasoning applies to
each Ŝk, successively.

6. CONCLUDING REMARKS

We have focused on the existence of coalition partitions that are stable
to the movements of one player at a time and noted some relationships
between various forms of such stability and Pareto efficiency. While exis-
tence of stable coalition partitions may be reassuring, one also cares about
the properties that the stable coalition partitions will exhibit. Will they be
fair, for example, treating equal players equally and being envy free? How
will they adjust as the population grows? Will players have incentives to
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misrepresent their preferences when forming a coalition? These are impor-
tant questions to address in further research.
To close, we provide a few examples that suggest that one will have to

identify special domains in order to make sure that stable coalition parti-
tions are nicely behaved.
First, we point out that there are some very simple situations where sta-

ble partitions will necessarily treat players asymmetrically. For example,
suppose that a society contains three players who care only about coali-
tion size. They all have preferences over coalition sizes being described by
2 �i 1 �i 3. Here, any individually stable coalition partition (as well as core
stable, Nash stable, and individually contractually stable partition) consists
of two players together and one player alone. This violates most notions of
fairness.20�21

Of course, fairness in a traditional sense of full symmetry, like equal
treatment of equals or envy-freeness, is generally difficult (if not impossible)
to achieve in settings with indivisibilities. In our case though, fair allocations
exist at the expense of efficiency and stability. One can simply place all
players in one coalition, or leave each one alone, or divide them in groups
of the same size. Another common way to restore fairness is to allow for
some randomization and to take an ex ante perspective, which could be
employed here.
It is worth pointing out that in our setting we can regard stability as

a requirement that bears some “restricted fairness” flavor. Indeed, Nash
stability guarantees that any player will not be interested in joining another
group. This is a weakening of an envy-freeness requirement, which demands
that any player will not be interested in replacing a player in another group.
Next, we point out that the set of individual stable partitions does not

necessarily evolve nicely as the population size changes. Consider N =
�1� 2� 3� 4�, and the anonymous preferences that are single-peaked over
coalition size represented by

2 �1 1 �1 3 �1 4

and
4 �i 3 �i 2 �i 1� for i ∈ �2� 3� 4��

20For example, it violates envy-freeness and equal treatment of equals. Say that a partition is
envy free if S��i� �i �S��j� ∪ i�\j for every i and j /∈ S��i�. Say that it satisfies equal treatment
of equals if S��i� ∼i �S��j� ∪ i�\j for every i and j such that �i and �j are the same (under
a permutation of i and j)

21The example also shows that Pareto efficiency is incompatible with fairness. This suggests
that it is necessary to sacrifice symmetry and fairness in order to achieve either individual sta-
bility or efficiency. This is not surprising in a setting with such indivisibilities, but is noteworthy
nonetheless.
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Start with just players 1 and 2. The unique individually stable coalition
partition is ��1� 2��. Next, add players 3 and 4. The unique individually
stable coalition is ��1�� �2� 3� 4��. Player 1 is worse off and player 2 is
better off due to the arrival of the new players. This violates population
monotonicity, which says that players’ welfare should move in the same
direction due to a change in population size (for example, see Thomson, in
press).
We conclude with an example showing the incentives of players to mis-

represent their preferences in situations where preferences are be private
information. Take n to be even and n ≥ 4. (Slight variations on this exam-
ple work when n is odd.) If all players have peak n − 1 and find n least
preferred, then the only individually stable partitions are splits into two
coalitions of sizes 1 and n − 1. Consider any such partition, which without
loss of generality we take to be �1�� �2� � � � � n�. Let all players except n
have the same preferences as before, and the preferences of n change to
have a peak at 2, with size 1 being least preferred. It is easy to check that
here the only individually stable partition is �n�� �1� � � � � n − 1�. Note that
in the second situation, player n would be better off pretending to have a
peak of n − 1.
Thus, for n ≥ 4, there does not exist a nonmanipulable rule on the

domain of anonymous and single-peaked over coalition size preferences,
which would always select an individually stable partition. This suggests
difficulties in combining nonmanipulability of the rule and stability of
outcomes.
The above discussion points out that in addition to further study of the

existence of stable and efficient coalition partitions in the hedonic model,
there is a rich set of questions to be analyzed regarding the satisfaction of
other desirable properties.22

APPENDIX

Proof of Theorem 2. To prove that the algorithm results in an individu-
ally stable partition we establish the following claims.

Claim 1. At any point in the algorithm, for any coalition S that is par-
tially or fully formed, maxi∈S pi ≥ c�S�.
If S is a singleton, then this is obvious. Otherwise, let k be the last

player who was added to S. Suppose the contrary of the claim. By (i) in the

22Some recent papers provide further analysis in these directions. For instance, see
Alcaldé and Revilla (1999), Alcaldé and Romero-Medina (2000), Burani and Zwicker (2000),
Haeringer (2000), Milchtaich and Winter (1997), and Papai (2000).
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definition of ordered characteristics, it follows that c�S� = #S > maxi∈S pi.
If c�S\k� = #S − 1, then some i in S would have closed S to k’s entry. So
it must be that c�S\k� �= #S − 1, and by (i) it follows that c�S\k� = pj for
some j ∈ S\k. Then j should have closed S\k to k which is a contradiction.

Claim 2. The only way c�S� may decrease for some S at some point in
the algorithm is for a player to leave S. So, once Sk+1 has started to be
formed, c�Sk� can only increase.

This follows from (the proof of) Claim 1.

Claim 3. For any k, c�Sk� ≥ maxi∈Sk+1
pi.

Suppose the contrary of the claim. It must be that pi > c�Sk� for some
i ∈ Sk+1. This means that this must be true for the highest indexed player
who was not in a coalition when Sk+1 was starting to be formed. As this
player has a pi that is no higher than all those in Sk at that time (call
it S′

k), it follows that pj > c�Sk� ≥ c�S′
k� for all j ∈ S′

k. This means that
c�S′

k� = #S′
k and c�S′

k ∪ i� = #S′
k + 1, which is no more than pi. Then by

(i) and Claim 2, it follows that i would have been added to Sk under the
algorithm when Sk was being formed. This is a contradiction.

Claim 4. c�Sk� ≥ c�Sk+1� for all k.

This follows from Claims 1 and 3.

Claim 5. At any point in the algorithm, if some Sk �= � is open to a
player i /∈ Sk, then c�Sk� + 1 ≥ c�Sk ∪ i� ≥ c�Sk�.
If Sk is open to a player i, then by Claim 1 it follows that c�Sk ∪ i� ≥

c�Sk�. If c�Sk ∪ i� > c�Sk� + 1 then it must be that c�Sk� �= #Sk and so by
(i) of the definition of ordered characteristics there exists j ∈ Sk such that
pj = c�Sk�. But then Sk will be closed to i.

Claim 6. For any nonempty S at any point in the algorithm, if i /∈ S,
l /∈ S, c�S� ≥ pi ≥ pl, and S is closed to i, then S is also closed to l. After S
is formed and we proceed to form the next coalition in the algorithm, this
statement also becomes true for i /∈ S, l /∈ S, c�S� ≥ pl > pi.

Suppose that S is closed to i but open to l. Then it must be that c�S ∪ i� �=
c�S ∪ l� and so (ii) in the definition of ordered characteristics implies that
pi > c�S ∪ l�. This implies that c�S� > c�S ∪ l�, which by Claim 1 implies
that S should have been closed to l which is a contradiction. If pl > pi,
then from (ii) we have c�S ∪ l� ≤ pl and so l (or, by the first part of the
claim, some other player with at least as high a peak) would have been
added to S during the time when S was formed.

Claim 7. When Sk is being formed, c�Sk� does not increase if i is moved
from Sk to Sl, k > l, i.e., c�Sk − i� ≤ c�Sk�.
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Let j be the last player added to Sk before i is moved. We have that
c�Sk − j� ≤ c�Sk�. Since pj ≤ pi, (ii) implies that c�Sk − i� = c��Sk − i −
j� ∪ j� ≤ c��Sk − i − j� ∪ i� = c�Sk − j� ≤ c�Sk�.
Claim 8. c�Sk� ≤ pj for all j ∈ Sk except if j was moved to Sk from

some S� with � > k.

This is true when j enters by the definition of the algorithm. If pj >
c�Sk� at the time a new player l is admitted it follows from Claim 5 that
pj ≥ c�Sk ∪ l�. If pj = c�Sk� and a new player l is admitted then it must be
that c�Sk� = c�Sk ∪ l�. Finally, by Claim 7 the desired inequality remains
true when some player is moved from Sk.

Claim 9. After a first player i is moved from Sk, c�Sk� cannot grow
beyond the value it had just before i left.

By Claims 7 and 8 it follows that c�Sk − i� ≤ c�Sk� ≤ minj∈Sk pj (in
particular, c�Sk − i� ≤ pi). If c�Sk − i� ∈ �pj"j ∈ Sk − i�, then it will not
change if a new player is added, or j would block such an addition. Suppose
that c�Sk − i� < minj∈Sk−i pj , and hence c�Sk − i� = #Sk − 1 and either
c�Sk� = c�Sk − i� = #Sk − 1 = pi or c�Sk� = #Sk ≤ minj∈Sk pj . Suppose
that some player x is added to Sk − i. By (ii), c�Sk − i ∪ x� ≤ c�Sk − i ∪
i� = c�Sk�. If px ≤ c�Sk − i ∪ x�, then the choice c�·� of this coalition
will not change subsequently. If c�Sk − i ∪ x� < px, then c�Sk − i ∪ x� =
#Sk = c�Sk� < px ≤ minj∈Sk pj . This implies that c�Sk + x� = #S + 1 ≤
minj∈Sk∪x pj , and so x (or, by Claim 6, some other player with a peak at
least as high) would be added to Sk before i was moved.

Claim 10. After some player i is moved to Sk from a coalition with a
higher index for the first time, the choice of the coalition will not change
(if any other players are also added).

By Claim 8, c�Sk� ≤ minj∈Sk pj . Thus, the only situation where Sk ∪ i can
be open to new players who change its choice is if c�Sk ∪ i� ≤ minj∈Sk∪i pj =
pi. But in this case i (or some other player with a peak at least as high)
would be added to Sk when it was originally formed.

Let us now verify that the resulting coalition partition is individually
stable.
Consider the incentives of a player i ∈ Sk to move to some open Sk′

where k′ < k. By Claims 3, 4, and 5, it follows that c�Sk′ ∪ i� ≥ c�Sk′ � ≥
pi > c�Sk�. By the definition of the algorithm and Claim 2 it follows that
c�Sk′ ∪ i� > pi > c�Sk�, or else i (or some other player with at least as high
a peak, given (ii)) would have been added to Sk′ during the step where Sk′

was formed. Consider the last time that i was offered a chance to move to
a larger coalition. She did not prefer Sk′ over Sk at that time, and nobody
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from Sk was moved to a lower indexed coalition after that. By Claim 2,
neither c�Sk� nor c�Sk′ � could have decreased since that point. So, since i
did not prefer Sk′ over Sk when she got the last chance to move, then she
will not want to move in the final partition.
Next, consider the incentives of a player i ∈ Sk to move to some open

Sk′ where k′ > k. We need only consider i such that pi < c�Sk�, as it
follows from Claims 1 and 5 that for Sk′ to be open to i it must be that
maxj∈Sk′ pj ≥ c�Sk′ ∪ i�; which by Claim 3 implies that c�Sk� ≥ c�Sk′ ∪ i�.
This implies (by Claim 8) that i was a player who moved into Sk from some
other coalition Sl, l > k. Hence by Claim 10, c�Sk� did not change after
she moved in. Let us consider three cases on the ordering of k′ and l, and
show that in each case i could not benefit from moving.
If k′ < l, then Sk′ was closed for i at the time when i moved to Sk (if it

would be open we would have c�Sk′ ∪ i� ≤ maxpj∈Sk′ pj ≤ c�Sk� and i would
move to Sk′). But then by Claim 6, Sk′ is also closed for other players from
any Sl′ , l′ > k′, so it will not change and thus will not become open for i
later.
If k′ > l, then c�Sk′ � ≤ c�Sl�, and since c�Sl� did not grow from the

time i left it (call S′
l the composition of Sl just before i left), we have

that c�Sk′ � ≤ c�Sl� ≤ c�S′
l�. Suppose that Sk′ is open to i. From Claim 5,

c�Sk′ ∪ i� ∈ �c�Sk′ �� c�Sk′ � + 1�. Player i could be willing to move to Sk′ only
if c�S′

l� < c�Sk′ ∪ i�, which is only possible when c�Sk′ � = c�Sl� = c�S′
l� =

c�Sk′ ∪ i� − 1. But as c�Sk′ � changes by admitting i it must be that c�Sk′ � <
minj∈Sk′ pj and hence c�Sl� < minj∈Sk′ pj which contradicts Claim 3.
If k′ = l, then using the same reasoning as above (case k′ > l) we obtain

that i could be willing to move to Sl only if c�Sl� = c�S′
l� = c�Sl ∪ i� − 1, and

that it must be that c�Sl� < minj∈S′
l
pj ≤ minj∈Sl pj (as Sl is obtained from

S′
l after some players left and some with lower indices were added). This

implies that c�Sl� = c�S′
l� = #S′

l = #Sl. Consider now the player x ∈ Sl − S′
l

with the highest index. Since c�S′
l� = #S′

l , we have that c�S′
l ∪ x� ≤ #S′

l +
1 = c�S′

l� + 1 ≤ px ≤ minj∈S′
l
pj , i.e., c�S′

l ∪ x� = #S′
l + 1. But then x (or

some other player) should have been added to S′
k before moving i.

Next, we show that any ending coalition partition under the algorithm is
weakly Pareto optimal whenever the consistency condition (iii) is satisfied.
Suppose the contrary and consider a partition � = �Sk�Kk=1 which is the
stopping point of the algorithm, but is not weakly Pareto efficient, where
the indexing of � corresponds to the order in which coalitions were formed
in the algorithm. Let � = �Tk�K′

k=1 be a Pareto improvement of �, such that
S� �i� �i S��i� for all i for whom S��i� �= S� �i�. The following observations
are helpful in reaching a contradiction.

(1) If Sk = S��i� �= S� �i� for some i, then c�Sk� = #Sk.
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This follows from our definition of weak Pareto improvement and prop-
erty (i) of ordered characteristics.

(2) c�Sk� ≥ maxi∈Sk+1
pi > c�Sk+1� = #Sk+1 for each k such that

there is i ∈ Sk+1 with S��i� �= S� �i�.
This follows from Claims 1 and 3 and observation (1).
(3) If Sk = S��i� �= S� �i� for some i, then either c�Sk� < mini∈Sk pi

or there exists a unique player j ∈ Sk such that pj < c�Sk� < mini∈Sk−j pi.
Observation (1) implies that c�Sk� �= pi for all i ∈ Sk. By Claim 8,

c�Sk� > pj for some j ∈ Sk is possible only if j was moved to Sk after
it was initially formed. Consider such a j who was moved to Sk first, and let
S′
k be the composition of Sk just before j joined it. By Claim 10, the choice

of Sk subsequently remains equal to c�S′
k ∪ j�, and thus to #Sk = c�Sk� (by

observation (1)). If some players were moved to Sk after j then from prop-
erty (i) we have that #�S′

k ∪ j� < #Sk = c�S′
k ∪ j�, which is a contradiction.

Index the k’s such that Sk = S��i� �= S� �i� for some i by k1� � � � � k�

preserving the ordering so that kh < kj when h < j. In what follows, we
substitute h, h + 1, and h′ for kh, kh−1, and kh′ , whenever convenient.

(4) For each h ≥ 2 there exists Th ∈ � , T �= S��i� for any i, such
that #Sh = c�Sh� < c�Th� ≤ c�Sh−1�, and there exists T1 ∈ � such that
c�Sk1

� < c�T1�.
By observation (2), it follows that there exists T1 ∈ � such that c�Sk1

� <
c�T1�. So suppose the contrary of the observation, and find the smallest h ≥
2 such that 4 does not hold. Observation (2) implies that there exists i ∈ Sh
for whom c�� �i�� > c�Sh�. Then by our supposition, c�� �i�� > c�Sh−1�.
Since c�� �i�� �i c�Sh� and c�� �i�� > c�Sh−1�, it follows from Claim 4 that
each Sk with kh > k ≥ kh−1 must be closed to i, or i would have been
moved under the algorithm.

Case 1. minj∈Sh−1
pj > c�Sh−1�. This implies that it must be that

c�Sh−1 ∪ i� = pi < c�Sh−1�, or else Sh−1 would not be closed to i. By con-
sistency (iii) it follows that c�� �i�� ≤ pi which contradicts the fact that
c�� �i�� > c�Sh−1� ≥ pi.

Case 2. minj∈Sh−1
pj ≤ c�Sh−1�. By observation (3) it follows that

minj∈Sh−1
pj < c�Sh−1�. This implies that j was moved to Sh−1 from some

Sk with k > kh−1. By the reasoning above and condition (ii), it also fol-
lows that j was offered the opportunity to move to Sh−1 before i was
and so kh ≥ k. Since c�� �j�� �j c�Sh−1�, this implies by Claim 9 that
c�� �j�� > c�Sk�, which by Claim 4 implies that c�� �j�� > c�Sh�. Thus,
c�Sh� < c�� �j�� ≤ c�Sh−1�, which contradicts our supposition.

Finally, a contradiction is reached from observation (4) which implies
that the population comprising � must be larger than that comprising �.
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Alcaldé, J., and Revilla, P. (1999). “Strategy-Proofness and the Coalition Formation Problem,”
mimeo, University of Alicante.
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