Privacy-Preserving Incentive Mechanism Design for Federated Cloud-Edge Learning
intro
- cloud-edge computing
- three-layer
- edge devices, EDs
- process data locally
- acccess points, APs
- nearby edge servers
- upload to CC
- cloud center, CC
- further processing or aggregation
- minimize overall latency
- private data of ED entirely exposed to APs
- federated learning (FL) scheme
- EDs train models locally and only upload models to upper layers
- preserve privacy while maintaining model accuracy
- federated cloud-edge learning (FCEL) system
- EDs give models to AP and aggregate → partial model; APs give partial models to CC and aggregate → global model
- private data outputs may be attached by leveraging the sensitive information in these outputs
- og data may be partially recovered (reverse engineer)
- differential privacy, DP
- upload model updates with noise pertubation for privacy
- avoids high computaion & communication overhead
- pertubations affect model → privacy-accuracy trade-off
- add Gaussian noise permuation
- noice scaler over a threashold → AP unable to revover data
- large noice scale → hard to converge
goal & model
- optimal contract design problem
- obtain a global model with desired accuracy in a certain time period while preserving EDs' data privacy
- APs motivate EDs to participate without knowing EDs' privacy senstivitiy
- CC determine the monetary incentive for lower layers for max model accuracy, 3 layer Stackelberg game + optimal contract design problem
- CC pay APs, compensate what APs pay EDs
- APs pay EDs, compensate the data leakage of EDs
- choose different privacy budget
- contract theory
- constraints
- incentive compatibility, IC
- individual rationality, IR
- privacy budget \(\epsilon\) reasonable
- total rewards < total incentive
- 3 layer Stackelberg game, TLSG
- CC 預期 APs & EDs 策略,先手
- use gradient ascent to update coeff. until winthin threashold → optimized coeff.
results
- as noise scale increase, data leakage decrease & test loss increase exponentially
- APs ↑ \(U_{CC}\) ↓;EDs ↑ \(U_{CC}\) ↑
- comparison with DP-FedAvg
- DP-FedAvg
- PFCEL converges faster, achieves higher accuracy & lower test loss than DP-FedAvg
- test accuracy & test loss are close th those with zero noise scales
- EDs ↑ test accuracy ↑ test loss ↓
- non-i.i.d. degree of the whole data set decreases