Skip to content

Power Engineering

General

Constants

  • 1 feet = 12 inches
  • 1 mile = 1.609 km
\[\mu_0=4\pi\times10^{-7}\]
\[\epsilon_0=8.854\times10^{-12}\]

Formulas

\[II^* = |I|^2\]

because \((a+jb)(a-jb) = a^2+b^2\)

Phasor

\[re^{j\theta}=rcos\theta+rjsin\theta=r\angle\theta\]

Hyperbolic functions

\[cosh(x)=\dfrac{e^x+e^{-x}}{2}\]
\[sinh(x)=\dfrac{e^x-e^{-x}}{2}\]
\[tanh^{-1}(x)=\dfrac{1}{2}ln(\dfrac{1+x}{1-x})\]

power-engineering-1.png

Generator Rotating Speed

rotating speed of a generator = 120 x frequency / # of poles

e.g. 60Hz, 2 poles -> 3600 rpm

Ch2 Basic Principles

Complex Power

power-engineering-2.png

\[\phi=\theta_V-\theta_I\]

power-engineering-3.jpg

power-engineering-4.jpg

power-engineering-5.jpeg

cos & sin 積起來時被消掉

power-engineering-6.png

power-engineering-7.png

power-engineering-8.png

\[V_{max}=\sqrt{2}|V|\]
\[\begin{align*} v(t) &=V_{max}cos(\omega t+\phi)\\ &=\sqrt{2}|V|cos(\omega t+\phi)\\ \end{align*}\]

power-engineering-9.png

power-engineering-10.png

I lags V \(\phi\) -> phasor = \(\phi\)

\[\phi = \angle V - \angle I\]
  • lagging -> \(\phi>0\)
  • leading -> \(\phi<0\)

power factor (PF)

\[PF = cos(\phi)\]

power-engineering-11.png

\[S = |S|e^{j\phi} = |V||I|e^{j\phi}\]
\[S = |S|cos(\phi) + j|S|sin(\phi) = P+jQ\]
\[tan(\phi) = \dfrac{Q}{P}\]
\[tan(cos^{-1}(PF))=\dfrac{Q}{P}\]
\[|S| = |I||V|\]
\[|I| = \dfrac{|S|}{|V|}\]

Impedance

power-engineering-12.png

\[V = IZ\]
\[Z = R+jX\]
\[S = VI^* = ZII^* = |I|^2Z = |I|^2(R+jX) = P+jQ\]
\[P = |I|^2R\]
\[Q = |I|^2X\]
\[S = VI^* = V(\dfrac{V}{Z})^* = \dfrac{|V|^2}{Z^*}\]

Three-Phase Power

Each separated by \(120^{\circ}\), s.t. the instantaneous power is constant

power-engineering-13.png

Balanced Three-Phase Power

power-engineering-14.png

Each of the neutral points has the same voltage.

pf

power-engineering-15.png power-engineering-16.png

Knowing this, we can simplify the circuit

power-engineering-17.png

Impedance

Delta Wye Transformation

power-engineering-18.png

\[Z_\lambda = \dfrac{1}{3}Z_\Delta\]

pf

power-engineering-19.png power-engineering-20.png

Voltage

power-engineering-21.jpg

We know \(V_{an}\), \(V_{bn}\), \(V_{cn}\) are in sequence with common difference = \(-120^\circ\), now we can get the relationship between \(V_{an}\) & \(V_{ab}\)

\[V_{ab}=\sqrt{3}\angle{30^{\circ}}V_{an}\]

Power

Power = single phase power x 3

power-engineering-22.png

Problems

Basic Formula

power-engineering-23.png

Per phase

power-engineering-24.png power-engineering-25.png

If 440V is \(3\phi\), \(I\) should be \(\dfrac{S_{1\phi}}{\frac{440}{\sqrt{3}}}=328.04\) A

http://publish.illinois.edu/ece-476-fall-2017/files/2017/08/HW1Sol.pdf

Delta Wye Formula

power-engineering-26.png

Positive sequence

\[V_{ca}=208\angle{-120^{\circ}}\]
\[V_{bc}=208\angle{0^{\circ}}\]
\[V_{ab}=208\angle{120^{\circ}}\]
\[V_{ab}=\sqrt{3}\angle{30^{\circ}}V_{an}\]

$$V_{an}=\dfrac{V_{ab}}

{\sqrt{3}\angle{30^{\circ}}}=120\angle{90^\circ}$$

\[V_{bn}=\dfrac{V_{bc}}{\sqrt{3}\angle{30^{\circ}}}=120\angle{-30^\circ}\]
\[V_{cn}=\dfrac{V_{ca}}{\sqrt{3}\angle{30^{\circ}}}=120\angle{210^\circ}\]
\[I_a=\dfrac{V_{an}}{Z}=12\angle{105^\circ}\]
\[I_b=\dfrac{V_{bn}}{Z}=12\angle{-15^\circ}\]
\[I_c=\dfrac{V_{bn}}{Z}=12\angle{225^\circ}\]
\[S_{3\phi}=V_{an}I_a^*+V_{bn}I_b^*+V_{cn}I_c^*=\underline{4320\angle{-15^\circ}}\]

Ch3 Transmission Line

  • H = magnetic field intensity
  • B = magnetic field density

power-engineering-27.png

power-engineering-28.png

\[B=\mu H\]

power-engineering-29.png

Infinite straight wire

\(H\) outside the condutor

power-engineering-30.png

\(H\) inside the condutor

power-engineering-31.png

Conductor Bundling

GMR = geometric mean radius = goemetric mean of \(r'\) & the distance from one point to each of the other points

\[r'=re^{-\frac{1}{4}}=0.78r\]

Inductance per meter \(l\) \(\(l=\dfrac{\mu_0}{2\pi}ln\dfrac{D_m}{R_b}\)\)

power-engineering-32.png

power-engineering-33.png

power-engineering-34.png

Inductance per meter

Inductance per meter of three-phase tranposed lines

power-engineering-35.png

power-engineering-36.png

power-engineering-37.png

power-engineering-38.png

power-engineering-39.png

More problems

https://eegate.in/inductance-of-transmission-line-solved-numericals/

Phase-Neutral capacitance

phase-neutral capacitance

\[\bar{c}=\dfrac{2\pi\epsilon}{ln\dfrac{D_m}{R^c_b}}\]

power-engineering-40.png

Note that \(R_b^c\) uses \(r\) instead of \(r'=re^{-\frac{1}{4}}\) !!!!

Ch4 Transmission-Line Modeling

Terminal

\(Z_c\) = surge impedance

\(P_\mathrm{SIL}\) = surge impedance loading

\[P_\mathrm{SIL}=\dfrac{|V_1|^2}{Z_c}\]

power-engineering-41.png

\[Z_c=\sqrt{\dfrac{z}{y}}\]
\[\gamma=\sqrt{zy}\]

\(\gamma = \alpha+j\beta\)

  • \(\gamma\) = propagation constant
  • \(\beta\) = phase constant

power-engineering-42.png

power-engineering-43.png

power-engineering-44.png power-engineering-45.png

Transmission Matrix

power-engineering-46.png

power-engineering-47.jpg

power-engineering-48.jpg

Short Line

power-engineering-49.png

\(S_{12}\) = complex power from bus 1 to bus 2

\[S_{12}=P_{12}+jQ_{12}\]

power-engineering-50.png

\[\begin{align*} S_{12} &= V_{1}I_{1}^*\\ &= V_1(\dfrac{V_1-V_2}{Z})^*\\ &= \dfrac{|V_1|^2}{Z^*}-\dfrac{V_1V_2^*}{Z^*}\\ &= \dfrac{|V_1|^2}{|Z|}e^{j\angle Z}-\dfrac{|V_1||V_2|}{|Z|}e^{j\angle Z} e^{j\theta_{12}} \end{align*}\]

Power Cycle Diagram

power-engineering-51.png

power-engineering-52.png

Radial Line

Voltage at near, complex load at rear

power-engineering-53.png

Use Z=jX in the short line \(S_{12}\) formula

power-engineering-54.png

\[\begin{align*} S_D &=P_D+Q_D\\ &=P_D+j\beta P_D\\ \end{align*}\]
\[\beta=\dfrac{Q_D}{P_D}=tan(\phi)\]

\(P_{12}=-P_{21}\)

power-engineering-55.png

\[\begin{align*} |V_2|^2=\dfrac{|V_1|^2}{2}-\beta P_D X\pm \sqrt{(\dfrac{|V_1|^2}{2})^2-P_DX(P_DX+\beta\dfrac{|V_1|^2}{2})} \end{align*}\]

power-engineering-56.png

Ch5 Transformer

power-engineering-57.jpg

power-engineering-58.jpg

  • \(a=\dfrac{N_1}{N_2}\)
  • \(V_1=aV_2\)
  • \(I_1=\dfrac{1}{a}I_2\)

power-engineering-59.jpg

Inductance

\[R=\dfrac{l}{\mu A}\]
\[L_m'=\dfrac{N^2}{R_m}\]

power-engineering-60.png

Autotransformer

power-engineering-61.png

power-engineering-62.jpg

  1. Redraw into 5.28 (b)
  2. Calculate
    • \(V_2=V_1+2V_1=3V_1=360V\)
    • \(V_2=I_2(7+j8)=I_2(10.63\angle 48.81^\circ)\)
    • \(I_2=33.87\angle(-48.81^\circ)\)
    • \(I_1=2I_2+I_2=3I_2=101.61\angle(-48.81^\circ)\)

Three-Phase Transformer

power-engineering-63.png

power-engineering-64.png

power-engineering-65.png

Problem

power-engineering-66.jpg

  • Wye-Delta connection
  • \(n=58\)
  • \(V_{a'n'}=\dfrac{n}{\sqrt{3}}\angle(-30^\circ)V_{an}\)
  • \(V_{bn}=V_{an}\angle(-120^\circ)\)

Per-Phase Transformer Analysis

power-engineering-67.png

\(K_1\) = gain = \(\sqrt{3}n\angle(30^\circ)\)

power-engineering-68.png

Per Unit Normalization

indicated by p.u.

power-engineering-69.png

Changing base

power-engineering-70.png

power-engineering-71.png

power-engineering-72.png

power-engineering-73.png

power-engineering-74.png

Ch6 Generator Modeling 1 - Machine Viewpoint

Round-Rotor Machine

power-engineering-75.png

\[E_a=V_a+I_a(r+jX_s)\]

power-engineering-76.png

Problem

power-engineering-77.png

\[P=0.5=|V_a||I_a|cos(\phi)=|I_a|cos\phi\]
\[\begin{align*} & E_a=V_a+I_a(j1+j0.5)\\ &= 1+|I_a|\angle(-\phi)(j1.5)\\ &= 1+1.5|I_a|cos(-\phi+90^\circ)+j1.5|I_a|sin(-\phi+90^\circ)\\ &= 1+1.5|I_a|sin(\phi)+j1.5|I_a|cos(\phi)\\ &= 1+1.5|I_a|sin(\phi)+j0.75 \end{align*}\]
\[|E_a|=1.5\]
\[1+1.5|I_a|sin\phi=\sqrt{1.5^2-0.75^2}=1.3\]
\[|I_a|sin\phi=0.2\]
\[|I_a|=\sqrt{0.5^2+0.2^2}=0.539\]
\[\phi=tan^{-1}(\dfrac{0.2}{0.5})=21.8^\circ\]
\[I_a=0.539\angle(-21.8^\circ)\]

Salient-Pole

With \(X_d\) & \(X_q\)

power-engineering-78.png

power-engineering-79.png

\[a'=V_a+I_a(r+jX_q)\]
\[\begin{align*} & E_a=V_a+rI_a+jX_dI_{ad}+jX_qI_{aq}\\ &= a'+j(X_d-X_q)I_{ad} \end{align*}\]

\(a'\) has the same angle as \(E_a\) & \(I_{aq}\)

power-engineering-80.png

power-engineering-81.png

To find \(E_a\) given everything else

  1. find \(a'\) to know the angle of \(I_{aq}\) & \(E_a\)
  2. Find \(I_{aq}\) & \(I_{ad}\) with \(|I_a|cos\theta\) with \(\theta\) being the angle diff with \(I_a\)
  3. Find \(E_a\)

power-engineering-82.png

power-engineering-83.png

If \(3\phi\) short circuit

power-engineering-84.jpg

power-engineering-78.png