Skip to content

Taylor approximation

first-order

f(x)f(a)+f(a)(xa)

so the approximation of f(x)=log(1+x) around x=0 is

log(1+x)x

second-order

f(x)f(a)+f(a)(xa)+12f(x)(xa)2

example

given g(X) & μ=E(X)

first-order

g(X)g(μ)+g(μ)(Xμ)
Var(g(X))=[g(μ)]2Var(X)

second-order

g(X)g(μ)+g(μ)(Xμ)+12g(X)(Xμ)2
E[g(X)]g(μ)+12g(μ)Var(X)=g(μ)+12g(μ)[g(μ)]2Var(g(X))

when g(X)=log(X)

E[log(X)]log(μ)12Var(log(X))
logE(X)=E(logX)+12Var(logX)
E(X)=eE(logX)+12Var(logX)