Skip to content

Taylor approximation

first-order

\[f(x)\approx f(a)+f'(a)(x-a)\]

so the approximation of \(f(x)=\log(1+x)\) around \(x=0\) is

\[\log(1+x)\approx x\]

second-order

\[f(x)\approx f(a)+f'(a)(x-a)+\dfrac{1}{2}f''(x)(x-a)^2\]

example

given \(g(X)\) & \(\mu=E(X)\)

first-order

\[g(X)\approx g(\mu)+g'(\mu)(X-\mu)\]
\[Var(g(X))=[g'(\mu)]^2Var(X)\]

second-order

\[g(X)\approx g(\mu)+g'(\mu)(X-\mu)+\dfrac{1}{2}g''(X)(X-\mu)^2\]
\[E[g(X)]\approx g(\mu)+\dfrac{1}{2}g''(\mu)Var(X)=g(\mu)+\dfrac{1}{2}\dfrac{g''(\mu)}{[g'(\mu)]^2}Var(g(X))\]

when \(g(X)=\log(X)\)

\[E[\log(X)]\approx \log(\mu)-\dfrac{1}{2}Var(\log(X))\]
\[\log E(X)=E(\log X)+\dfrac{1}{2}Var(\log X)\]
\[E(X)=e^{E(\log X)+\frac{1}{2}Var(\log X)}\]